

Flood Impact & Risk Assessment

39 Redground Rd, Crookwell, NSW

Lot 1 DP 1064795

LGA: Upper Lachlan Shire Council

Report No: 20240213_23017_001 Revision: 0 Site Inspection: 20th July 2023 Report Date: 13th February 2024

John Weil Principal Civil Engineer / Director BEng(Hons) MIEAust CPEng NER

Author and Document Control:

Design/Field Work By:	Written By:	Reviewed / Approved By:
Josh Eves	Josh Eves	John Weil
Civil Engineer	Civil Engineer	Principal Civil Engineer

Record of Distribution:

Туре	Report No. & File	Status	Revision	Date	Prepared For
Electronic	20240213_23017_001	Approval	0	13 th February 2024	Council

References:

- Upper Lachlan Shire Council Development Control Plan
- Upper Lachlan Shire Council The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan 2017 Volume 1
- Australian Rainfall & Runoff A Guide to Flood Estimation 2019
- Flood Risk Management Manual: The policy and manual for the management of flood liable land (2023) Department of Planning and Environment NSW Government
- Landcom Managing Urban Stormwater Soil and Construction Volume 1 (4th Edition 2004) known as the "blue book".
- Civil Engineering Concept Design & Flood Impact Sheet Set, Ref 23017 *Revision PO* by CivPlan Pty Ltd dated 6th February 2024
- The Estimation of Probable Maximum Precipitation in Australia: Generalised Short-Duration Method – Commonwealth Bureau of Metereology

Contents

1. Purpose and Scope of Plan	ł
1.1 Purpose and Scope	t
2. Project Overview & Hydrology	t
2.1 The Site	t
2.2 Proposed Development	5
3. Hydrological Modelling	5
3.1 Model Adoption	5
3.2 Catchment Areas	1
3.3 DRAINS Modelling Input Parameters	3
3.4 Rainfall Data)
3.5 Results)
3.6 Calibration	7
4. Hydraulic Modelling	7
4.1 Digital Elevation Model (DEM)1	7
4.2 Surface Modification	3
4.3 2D Flow Area and Boundary Conditions18	3
4.4 2D Hydraulic Model – Manning's Roughness19)
4.5 Results)
4.7 2D Hydraulic Model Validation	Ĺ
5. Conclusions	3

Appendices:

- Appendix A: Civil Engineering Concept Design & Flood Impact Sheet Set
- Appendix B: ARR Data Hub
- Appendix C: IFD Data
- Appendix D: PMF Calculations
- Appendix E: REFE

1. Purpose and Scope of Plan

1.1 Purpose and Scope

The purpose of this Flood Impact and Risk Assessment (FIRA) is to provide support for a planning proposal for the proposed development, at 39 Redground Road, Crookwell, NSW. The scope of this FIRA includes the assessment of the pre-development and post-development scenarios and the extent of the flood behaviour across the site and surrounding properties. This report will also include the findings of this analysis.

2. Project Overview & Hydrology

2.1 The Site

The site is located within Lot 1 DP 1064795 at 39 Redground Rd, Crookwell, NSW, and is within the Upper Lachlan Shire Council LGA, as shown in figures 1 and 2. Access to the site is via Redground Rd. The area to the east of the site is mainly residential, and the rest of the area around the site is predominantly composed of rural residential homes and farms.

Figure 1: Site Location - NSW Imagery (SIX Maps)

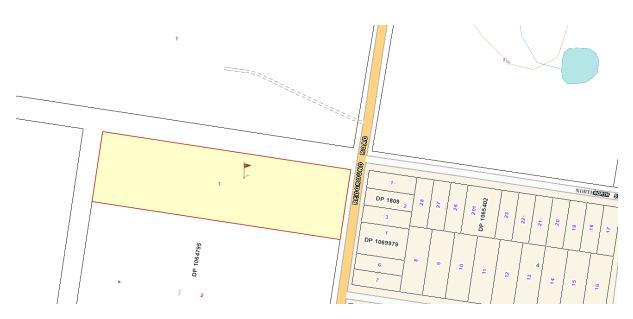


Figure 2: Site Location - NSW Topo (SIX Maps)

Lot 1 DP 1064795 has an approximate area of 2.00ha. The existing lot boundaries have approximate dimensions of 75m in the north to south direction and 267m in the east to west direction. The site is rectangular in shape. The area of the site under consideration has a gentle slope of approximately 1% falling from RL910.5 at the north-western corner of the site down to RL 902.9 at the south-eastern corner.

Currently there is a driveway into the site from the eastern boundary that leads to a dwelling and a shed in the centre of the site. The dwelling is surrounded by trees to the east and south. The rest of the site is mainly composed of medium to long grass.

The closest watercourse is 247m away from the site, as shown in figure 2. There are existing swales on both sides of Redground Rd which convey overland flows from the south to the north with pipe crossing where existing driveways are present.

There is no need to analyse the watercourse due to the distance to it and the flows are directed away from the site.

2.2 Proposed Development

The subject land is currently the subject of an ongoing planning proposal. The current site is proposed to be subdivided into 21 residential lots of minimum 800m² as shown in figure 3.

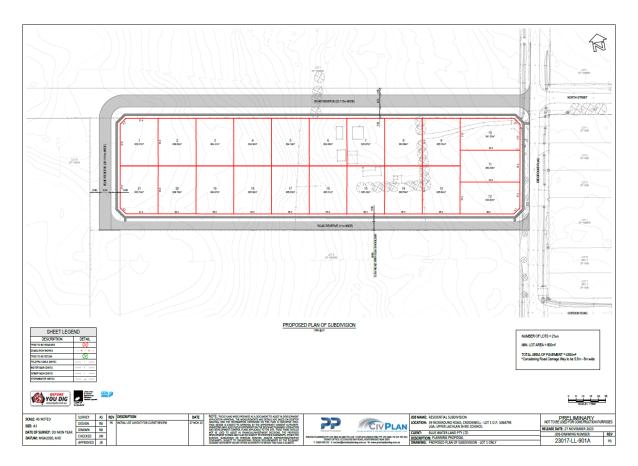


Figure 3: Proposed Residential Subdivision

This report will outline the pre-development and the post-development conditions of the site, and the overland flows through and around the proposed development using hydrology and 2D hydraulic modelling.

3. Hydrological Modelling

3.1 Model Adoption

Hydrological modelling was conducted in DRAINS using RAFTS storage routing model.

RAFTS storage routing models can model larger catchments using a lumped approach by assuming heterogeneity with sub-catchments to account for the storage and retardance of flows that occurs within the sub-catchments. Such models account for slope and roughness and use a loss model to produce a hydrograph at the sub-catchment outlet which can be input into HEC-RAS for unsteady 2D hydraulic flow analysis.

The RAFTS hydrological model was chosen because it is widely used and accepted across Australia within the industry and has been shown to be insensitive to initial conditions.

The DRAINS model configuration is shown in figure 4.

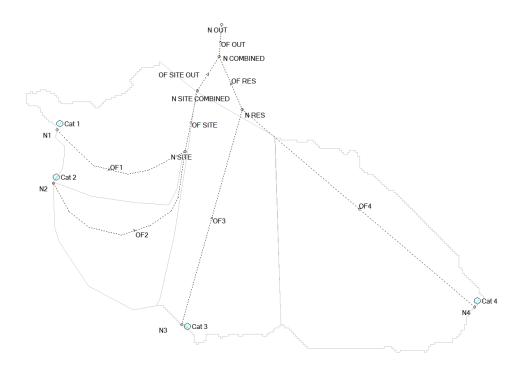


Figure 4: DRAINS Model Configuration

3.2 Catchment Areas

The catchment area draining to through the site was derived using 1m LiDAR Digital Elevation Models (DEM) sourced from ELVIS (http://elevation.fsdf.org.au).

DEM contour data was used to map sub-catchments boundaries (4 in total), determine their areas and overland flow paths. Impervious percentages for each catchment were estimated by digitising polygons of impervious areas (i.e. roads and roofs) from aerial photographs. Sub-catchment slopes were derived using slope analysis conducted on the above terrain data.

The Manning's coefficients for the DRAINS (RAFTS) model have been critically analysed for each catchment and overland flow path individually (see table 1), depending on the land use type and surface. See figure 5 below for the various Manning's coefficients used for different land applications.

Surface Type	Suggested n Values	
Concrete Pipes or Box Sections	0.012	-
Concrete (trowel finish)	0.012 - 0.015	
Concrete (formed, without finishing)	0.013 - 0.018	-
Concrete (gunite)	0.016 - 0.020	
Bricks	0.014 - 0.016	Flow across Parks
Pitchers or Dressed Stone in Mortar	0.015 - 0.017	Flow across Rural Residential land
Random Stones in Mortar or Rubble Masonry	0.020 - 0.035	Flow across Residential (2a)
Rock Lining or Rip-Rap	0.025 - 0.030	Flow across Residential (2b)
Earth (clear)	0.018 - 0.025	Flow across Industrial
Earth (with weeds or gravel)	0.025 - 0.035	Flow across Commercial
Rock Cut	0.035 - 0.040	Flow across Paved Areas
Short Grass	0.030 - 0.035	Flow across Asphalt Roads
Long Grass	0.035 - 0.050	Flow across Gravel Areas
<u>Channels</u>		<u>Overland Flow Retardan</u>

0.35

0.30 0.21

0.11 0.06 0.04 0.01 0.02

0.02

Land Use Type	Manning 'n'
Residential areas – high density	0.2 – 0.5
Residential areas – low density	0.1 – 0.2
Industrial/commercial	0.2 – 0.5
Open pervious areas, minimal vegetation (grassed)	0.03 – 0.05
Open pervious areas, moderate vegetation (shrubs)	0.05 – 0.07
Open pervious areas, thick vegetation (trees)	0.07 - 0.12
Land Use Type	Manning 'n'
Land Use Type Waterways/channels – minimal vegetation	Manning 'n' 0.02 - 0.04
Waterways/channels – minimal vegetation	0.02 - 0.04
Waterways/channels – minimal vegetation Waterways/channels – vegetated	0.02 - 0.04 0.04 - 0.1
Waterways/channels – minimal vegetation Waterways/channels – vegetated Concrete lined channels	0.02 - 0.04 0.04 - 0.1 0.015 - 0.02
Waterways/channels – minimal vegetation Waterways/channels – vegetated Concrete lined channels Paved roads/car park/driveways	0.02 - 0.04 0.04 - 0.1 0.015 - 0.02 0.02 - 0.03

Figure 5: ARR19 Book 6 Section 6.2.1 & 6.2.2

The manning's coefficients have also been precisely adopted depending on the type of land cover and surface on the HEC-RAS modelling, which will be detailed on the following topics.

The sub-catchment breakup is shown below in table 1.

39 Redground Rd, Crookwell, NSW – Sub Catchments						
Flo	Flood Impact & Risk Assessment – Sub-Catchments					
Name	Avg. Slope	Impervious				
CATCHMENT 1	4.189	0.04	2.44%	1%		
CATCHMENT 2	6.674	0.04	1.44%	2%		
CATCHMENT 3	13.67	0.15	1.02%	60%		
CATCHMENT 4	18.774	0.15	1.94%	60%		
тот	AL CATCHMENT	43.307	ha			

Table 1: Sub-Catchments Summary

3.3 DRAINS Modelling Input Parameters

The parameters adopted for DRAINS hydrological modelling are shown in table 2.

Parameter	Value Adopted	Justification/ Source
Impervious Area Initial Loss (mm)	1	Typical value for impervious areas.
Impervious Area Continuing Loss		
(mm/h)	0	Typical value for impervious areas.
		The value recommended in ARR Data Hub in accordance with recommended NSW loss
Pervious Area Initial Loss (mm)	15	hierarchy

Pervious Area Continuing Loss		The value recommended in ARR Data Hub in accordance with recommended NSW loss
(mm/h)	4.3	hierarchy
BX	1	RAFTS Default
Sub-catchment Area (km ²)	Varies	Refer to Table 1
		Refer to Table 1
		Estimated by digitising polygons of impervious
Impervious Area (%)	Varies	areas (i.e. roads and roofs) from aerial imagery.
		Refer to Table 1
		Determined from slope analysis of LiDAR DEM
Sub-catchment Slope (%)	Varies	data for each sub-catchment.
		Value across open areas, minimal vegetation
Manning's 'n'	0.04	(Grassed)
	0.15	Value across residential areas – low density

Table 2: DRAINS Hydrological Parameters Adopted

3.4 Rainfall Data

IFD design rainfall depth data and temporal patterns were derived in accordance with Australian Rainfall and Runoff (2019) using the Bureau of Meteorology's 2019 Rainfall IFD on-line Data System and are provided in Appendix B and C.

The temporal patterns for the East Coast South region were used as this covers the site (latitude - 34.458 South, longitude 149.470 East).

A copy of the rainfall depths for the range of storm durations can be found in the Appendix C.

Flows were routed along each link using DRAINS premium hydraulic model which applies the full S.t Venant equations of unsteady flow to overland flow routes. This allows water levels along these routes to be determined accurately, allowing for varied water surface flow profiles, including subcritical and supercritical flows. It also accounts for storage effects in overland flow routes.

3.5 Results

The DRAINS model was run in 'premium' hydraulic mode for storm durations ranging from 5 minutes to 9 hours for the major and minor rainfall events, being them the 1% AEP and 10% AEP consecutively. The 2-hour storm was analysed for the 10% due to the larger flow and the 6-hour storm was analysed for the 1% due to the larger flow and the 6-hour storm was analysed for the 1% due to larger flows of water during the storm event and larger volume.

The Probable Maximum Flood (PMF) was also analysed using DRAINS. The Probable Maximum Precipitation (PMP) has been calculated using intensities from Australian Rainfall & Runoff 1977 calculated using polynomial equations and in conjunction with the GDSM method in accordance with *The Estimation of Probable Maximum Precipitation in Australia: Generalised Short-Duration Method* document prepared by Commonwealth Bureau of Meteorology dated June 2003. The calculations can be found in Appendix E.

There are four overland flow paths that were analysed and they are identified in this study as OF1, OF2, OF3 and OF4 as shown in figure 6 below.

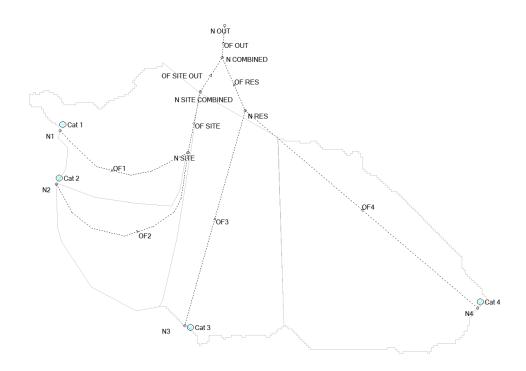


Figure 6: Outlet Overland Flow Path

The hydrograph data for OF1, OF2, OF3 and OF4 have been extracted from the DRAINS model that includes the minor (10% AEP), major (1% AEP) and the PMF. The hydrograph for these three rainfall events as shown in figures 7 to 18 below was entered into HEC-RAS for unsteady 2D flow analysis, which will be described in the following topic.

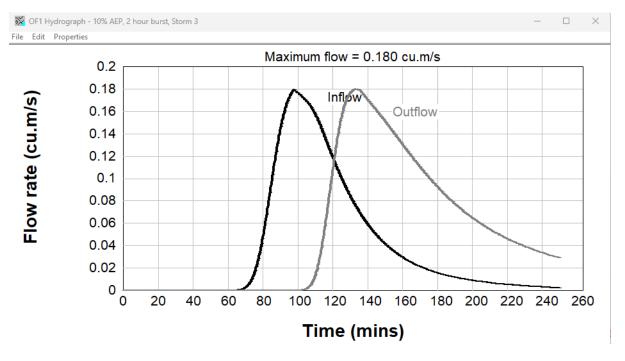
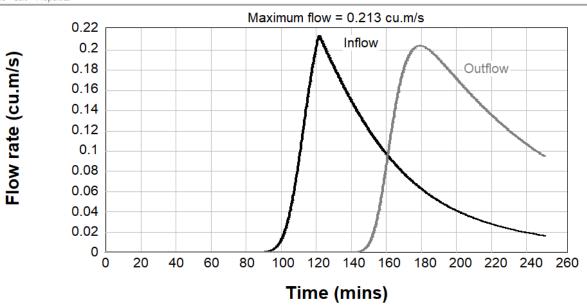



Figure 7: 10% AEP Median Hydrographs for OF1

 \times

Figure 8: 10% AEP Median Hydrographs for OF2

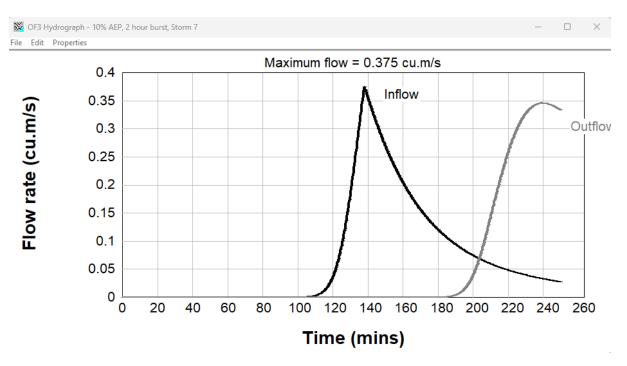
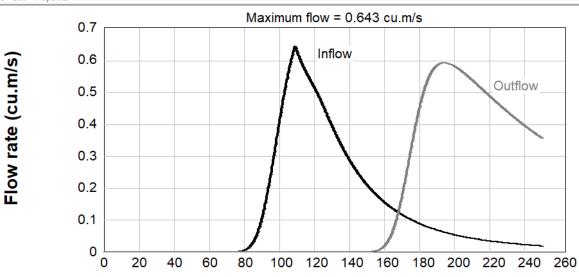



Figure 9: 10% AEP Median Hydrographs for OF3

×

Figure 10: 10% AEP Median Hydrographs for OF4

Time (mins)

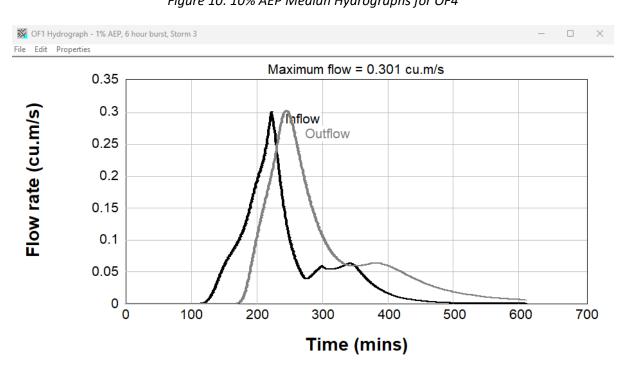


Figure 11: 1% AEP Median Hydrographs for OF1

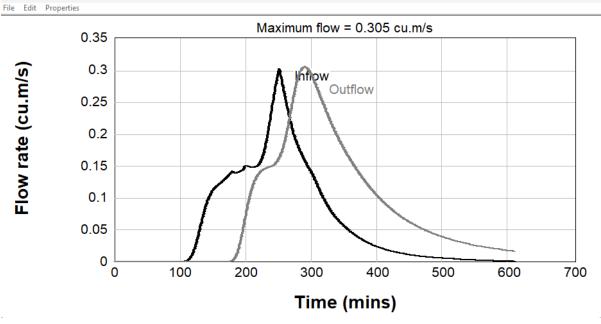


Figure 12: 1% AEP Median Hydrographs for OF2

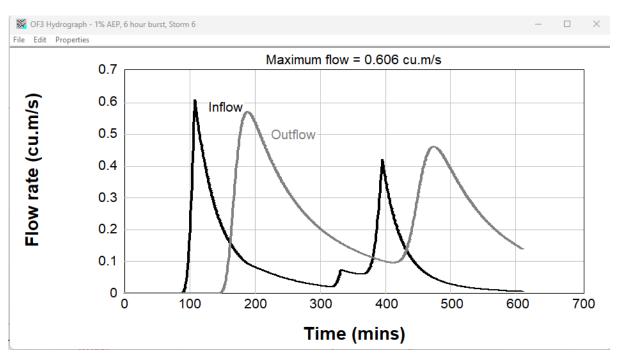


Figure 13: 1% AEP Median Hydrographs for OF3

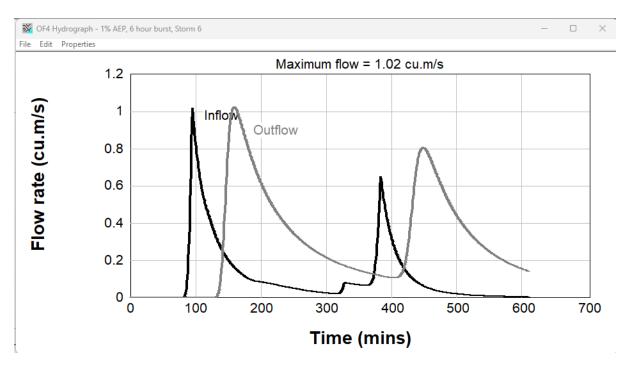


Figure 14: 1% AEP Median Hydrographs for OF4

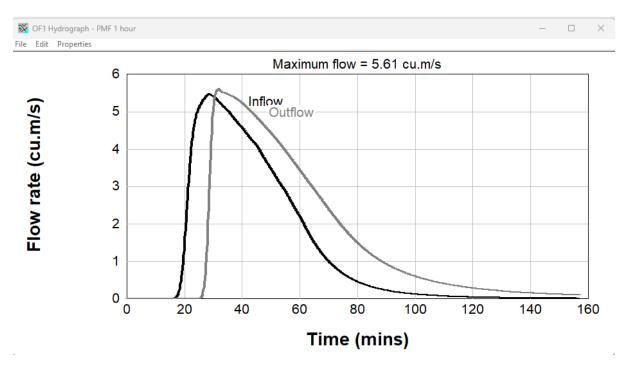
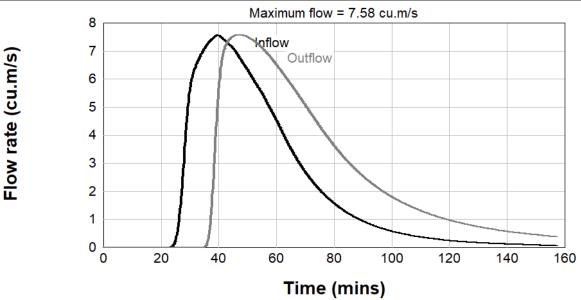



Figure 15: PMF Median Hydrographs for OF1

- 0

 \times

Figure 16: PMF Median Hydrographs for OF2

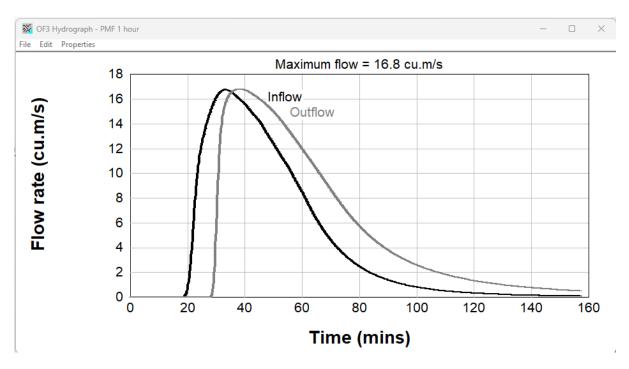


Figure 17: PMF Median Hydrographs for OF3

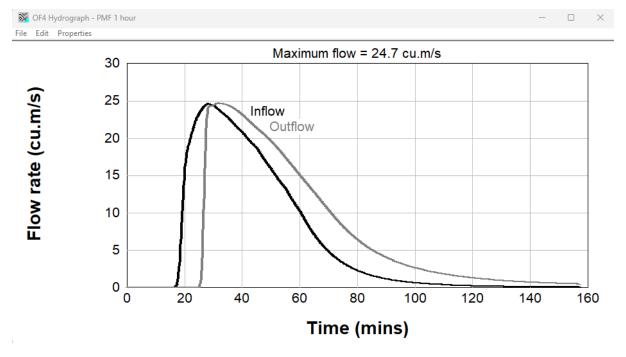


Figure 18: PMF Median Hydrographs for OF4

Critical storm duration refers to the duration of design storm that will result in the highest peak flood flows or levels at a particular location. The critical duration is influenced by various factors including upstream catchment area and may vary between locations of interest throughout a catchment or study area. With the introduction of ARR 2019 a representative temporal pattern must also be identified which produces a peak flow closest to but not less than the design peak flow (that being the average of peak flows from an ensemble set of 10 temporal patterns).

Critical Storms – 39 Redground Rd, Crookwell, NSW					
	10% AEP	10% AEP, 2 hour burst, Storm 3			
OF1	1% AEP	1% AEP, 6 hour burst, Storm 3			
	PMF	PMF, 1 hour			
	10% AEP	10% AEP, 2 hour burst, Storm 3			
OF2	1% AEP	1% AEP, 6 hour burst, Storm 2			
	PMF	PMF, 1 hour			
	10% AEP	10% AEP, 2 hour burst, Storm 7			
OF3	1% AEP	1% AEP, 6 hour burst, Storm 6			
	PMF	PMF, 1 hour			
	10% AEP	10% AEP, 2 hour burst, Storm 5			
OF4	1% AEP	1% AEP, 6 hour burst, Storm 6			
	PMF	PMF, 1 hour			
Table 2: Critical Storms for 10% 1% AED and DME					

Table 3: Critical Storms for 10%, 1% AEP and PMF

3.6 Calibration

In the absence of recorded gauges within the catchment area, calibration of the hydrologic model was unable to be undertaken in this study, and the model validation approaches were applied to the hydraulic model as described in section 4.7 of this assessment.

Furthermore, Regional Flood Frequency Estimation Model (FFFEM) is not applicable due to the catchment size being outside the recommended of 0.5 to 1,000km² and results having a lower accuracy. A REFEM was used to compare results from the Upper Lachlan Shire Council which has a catchment area of 9km² which is within the recommended catchment size. The REFEM output can be found in Appendix E. The REFEM output for the 0.43km² has also been provided in Appendix E.

4. Hydraulic Modelling

Modelling was conducted using an unsteady 2D Hydraulic HEC-RAS model.

4.1 Digital Elevation Model (DEM)

A digital elevation model (DEM) over the study area was established using 1m LiDAR Digital Elevation Models (DEM) sourced from ELVIS (<u>http://elevation.fsdf.org.au</u>).

Using the 1m DEM, a two- dimensional flow area (i.e. active cells) was defined over the subject site and surrounding areas over an area large enough to accommodate the expected flows. The LiDAR data used can be seen in figure 19.

Figure 19: Unmodified LiDAR DEM (Pre-Development)

The 1m DEM grid was imported into HEC-RAS and used as the basis for development to create the terrain model for the pre-development and post-development.

4.2 Surface Modification

The DEM was used as a base surface for the post-development scenario. A land survey has been carried out within the property for more accurate data of the existing condition of the site.

The perimeter road has been modelled using Civil Site Design, and the design TIN surface has been exported into HEC-RAS and combined with the pre-development DEM to represent the post-development layout to be used for hydraulic analysis.

The post-development surface is shown in figure 20.

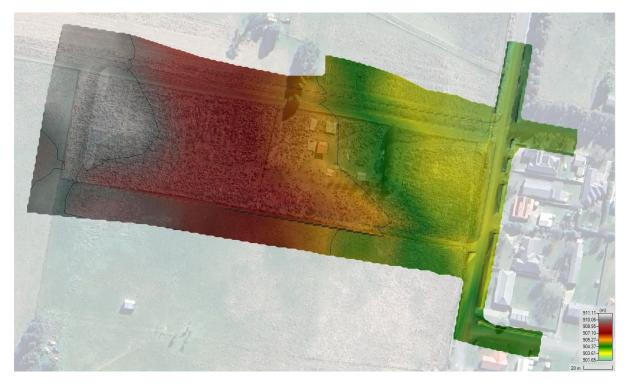


Figure 20: Design Surface (Post-Development)

4.3 2D Flow Area and Boundary Conditions

A two-dimensional flow area (mesh) and geometry has been created for pre-development and postdevelopment scenarios, extended downstream and upstream of the site to analyse the flow characteristics and the impacts on the adjoining properties.

The flow hydrograph for the upstream boundary conditions was derived from DRAINS using the results for the rainfall events previously mentioned for the internal and external catchments that affect the site and surrounding.

The inflow boundaries were extended along the upstream face of the two-dimensional domain at each location over a sufficient length to enable the model to appropriately distribute the flow to the cells that are wet. At any given time-step, only a portion of the boundary condition line may be wet,

therefore only the cells in which the water surface elevation is higher than their outer boundary face terrain will receive water.

Flows leaving the two-dimensional area were defined with a normal depth downstream boundary condition with a friction slope of 1% which is based on the gradient of the land at the location of the boundary according to the original 1m DEM surface. The friction slope method uses the Manning's equation to compute a normal depth for each given flow, based on the cross section underneath the two-dimensional boundary condition line and is computed on a per cell basis.

The location and extent of all boundary condition lines are shown in figure 21.

Figure 21: Location and Extent of Boundary Condition Lines

4.4 2D Hydraulic Model – Manning's Roughness

The Manning's Roughness coefficient was refined on the most critical areas within the 2D flow mesh in HEC-RAS according to the landcover and type of surface that best represents the pre-development and post-development condition of the subject site and surrounding area and adopted as shown in table 3 and figure 22 and 23 below.

Description	Manning's (N)
Open Areas with Low/Medium	
Vegetation	0.06
Residential Lots	0.15
Roads	0.02

Table 3: 2D Hydraulic Model – Manning's Roughness

Figure 22: 2D Hydraulic Model – Manning's Roughness – Pre-Development

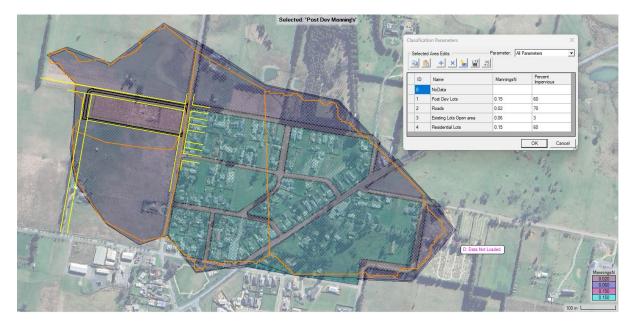


Figure 23: 2D Hydraulic Model – Manning's Roughness – Post-Development

4.5 Results

The 2D Hydraulic HEC-RAS model was run in unsteady mode with variable timestep controlled by Courant condition using the diffusion wave computational method. The model was used to simulate the flows for the 10%, 1% AEP and PMF.

Please refer to the civil engineering sheet set provided in Appendix A for the mapped results extracted from HEC-RAS where the flood characteristics (depth, velocity, and water surface elevation) for the pre-development and post-development scenarios have been compared.

Figures 24 and 25 below shows the flood depth for the 10% AEP rainfall event for the pre-development and post-development consecutively.

Figures 26 and 27 below shows the flood depth for the 1% AEP rainfall event for the pre-development and post-development consecutively.

Figures 28 and 29 below shows the flood depth for the PMF rainfall event for the pre-development and post-development consecutively.

Figure 30 and 31 below shows the flood WSE for the 10% AEP rainfall event for the pre-development and post-development consecutively.

Figure 32 and 33 below shows the flood WSE for the 1% AEP rainfall event for the pre-development and post-development consecutively.

Figures 34 and 35 below shows the flood WSE for the PMF rainfall event for the pre-development and post-development consecutively.

Figure 24: 10% AEP Event – Depth – Pre-Development

Figure 25: 10% AEP Event – Depth – Post-Development

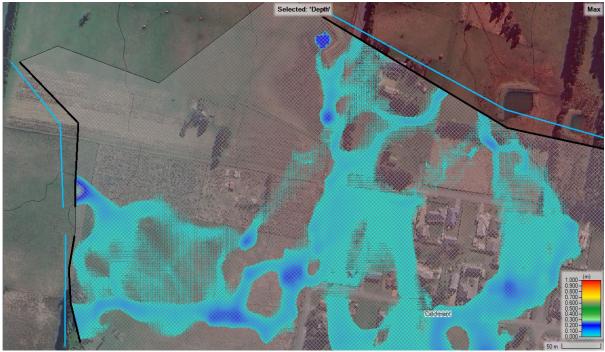


Figure 26: 1% AEP Event – Depth – Pre-Development

Figure 27: 1% AEP Event – Depth – Post-Development

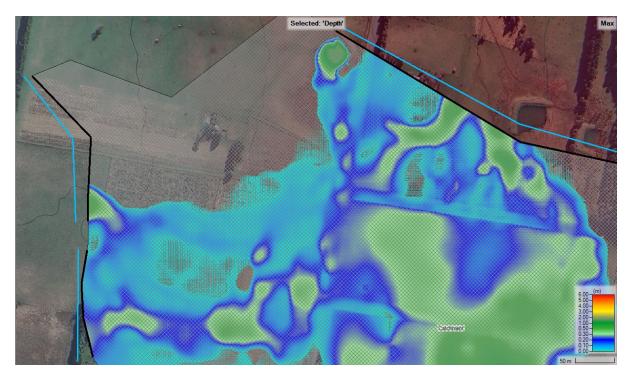


Figure 28: PMF Event – Depth – Pre-Development

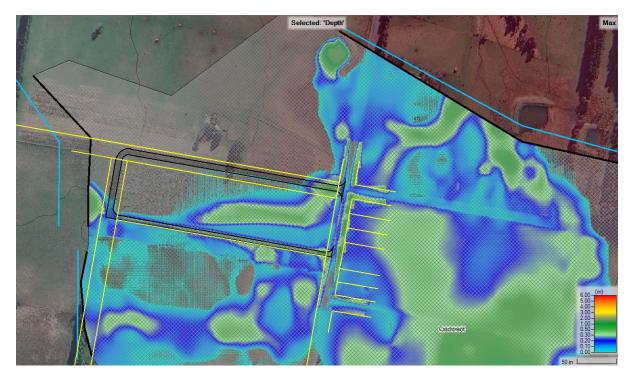


Figure 29: PMF Event – Depth – Post-Development

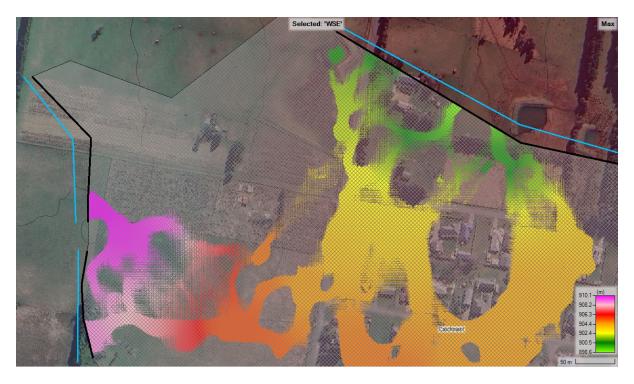


Figure 30: 10% AEP Event – WSE – Pre-Development

Figure 31: 10% AEP Event – WSE – Post-Development

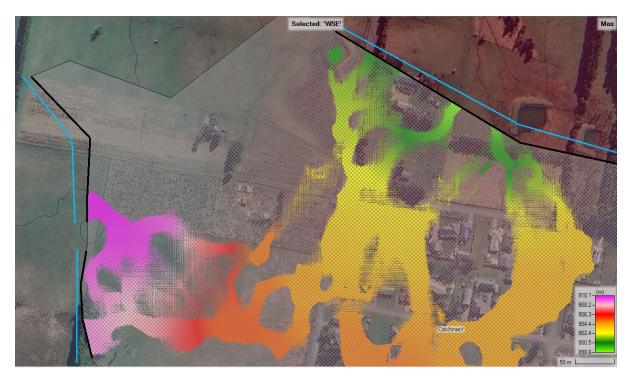


Figure 32: 1% AEP Event – WSE – Pre-Development

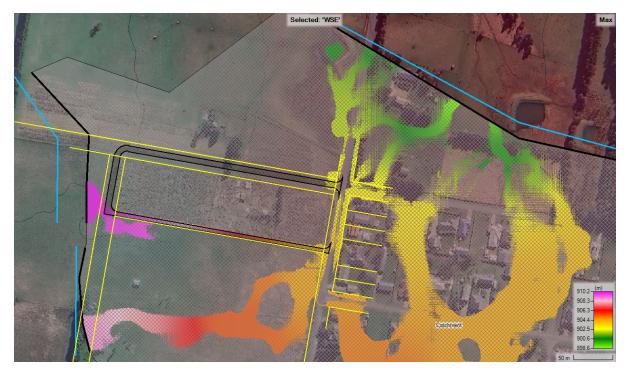


Figure 33: 1% AEP Event – WSE – Post-Development

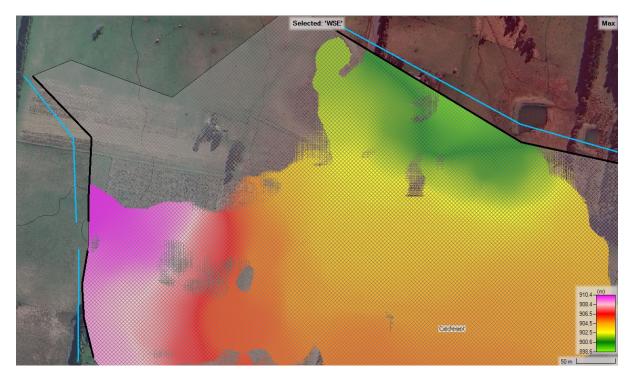


Figure 34: PMF Event – WSE – Pre-Development

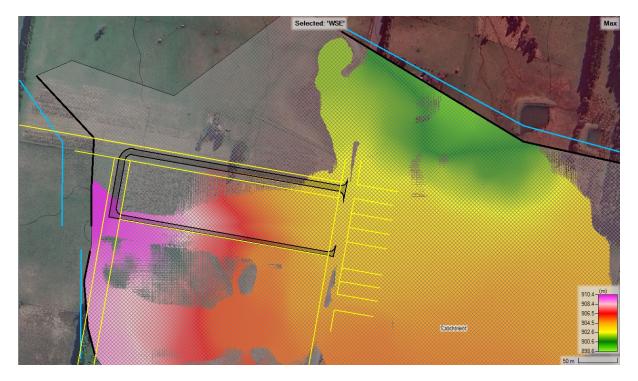


Figure 35: PMF Event – WSE – Post-Development

Figures 36, 37 and 38 below shows the 10%, 1% and PMF water surface elevation (WSE) comparison between the pre-development and post-development scenarios, including 'was wet now dry' and 'was dry now wet' areas. As shown, its conclusive that the development lots will not be impacted by the 10% and 1% AEP rainfall events. It can be seen in the figures by the light blue hatch that the flows travel down the post development roads which allows for the minor events to be treated via stormwater drainage and in major events the roads will act as overland flow paths. The sizing of the stormwater drainage will be undertaken at detailed design phase.

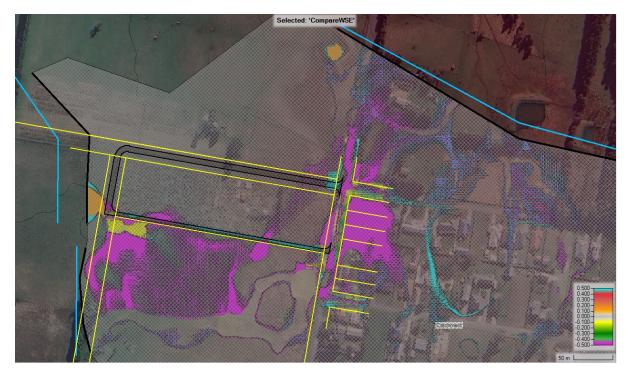


Figure 36: 10% AEP - WSE Comparison – Pre-Development x Post-Development

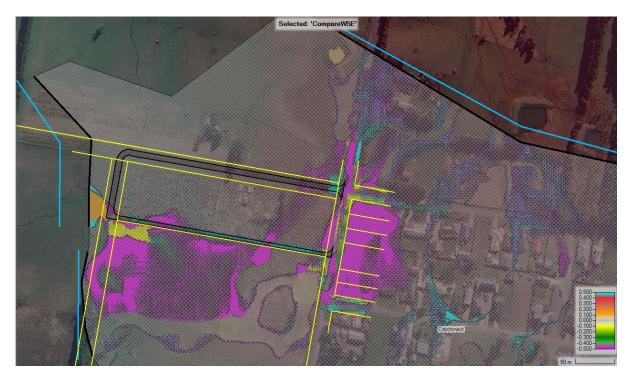


Figure 37: 1% AEP - WSE Comparison – Pre-development x Post-Development

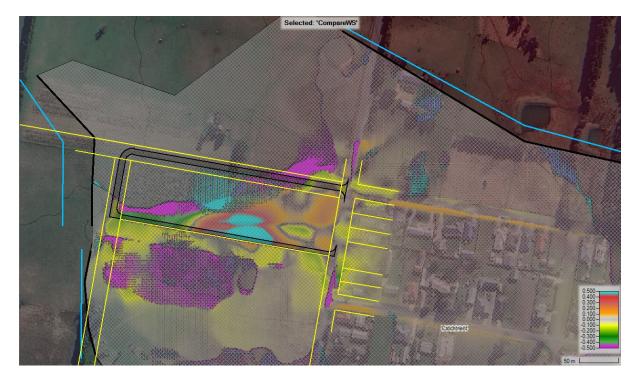


Figure 37: PMF - WSE Comparison – Pre-development x Post-Development

It can be seen in Figure 36 above that the post-development flood inundation impacts the predevelopment 10% and 1% AEP rainfall events where the new road reserves are. Taking a closer look at the post-development scenario during the 1% AEP event, the max $DxV = 0.11m^2/s$, being classified as H1 hazard category. This category is classified as generally safe for vehicles and people. As this is a road reserve, these results will be assessed in more detailed design phase via stormwater drainage and a DRAINS model. See figure 40 for the flood hazard classification extracted from ARR 2019 Book 6.

In Figure 37 above for the post-development flood inundation impacts the pre-development for the PMF. The flood inundation spills the road reserve boundaries and into the lots of 39 Redground, though this is generally of a very minor depth. Taking a closer look at these areas the max DxV for the roads. The majority of road 01 is $0.5m^2/s$ for road 02 and $0.2m^2/s$ for road 01. These numbers are within H2 and H1 categories which allows for vehicles to have safe access and egress. There are isolated pockets around the SAGs of the road that the kerb has a higher VxD. All flood inundation within the lots is all within the front boundary setbacks and H1 hazard categories.

See Figure 38, 39 and 40 below.

Figure 38: 10% AEP - VxD – Post-Development

Figure 39: 1% AEP - VxD – Post-Development

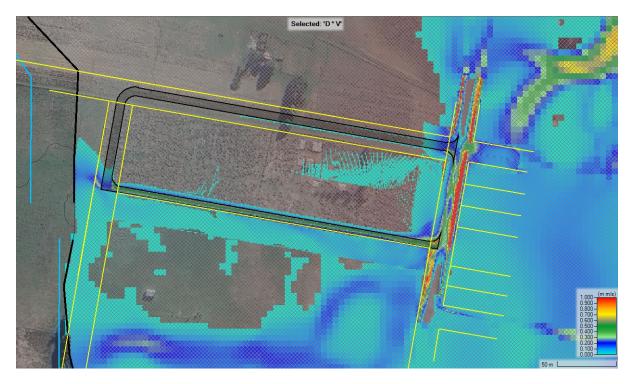


Figure 39: PMF - VxD – Post-Development

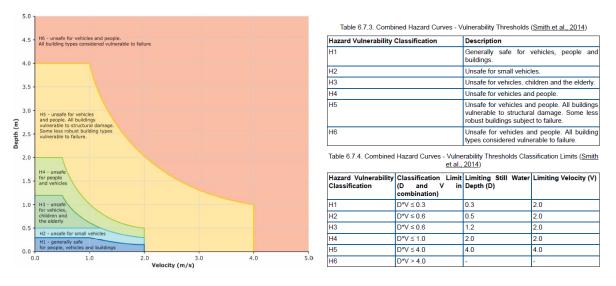


Figure 40: ARR19 Book 6 Section 6.7.3 & 6.7.4

4.7 2D Hydraulic Model Validation

The pre-development depth results from this assessment have been compared to the Crookwell Flood Study 2017 for the 1% and PMF rainfall events. The comparison is shown in figures 40 to 46 with legends shown for both studies which are matching.

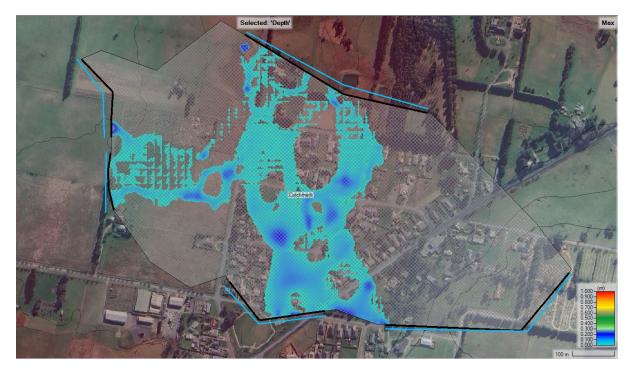


Figure 40: 1% AEP - Depths – Pre-Development model

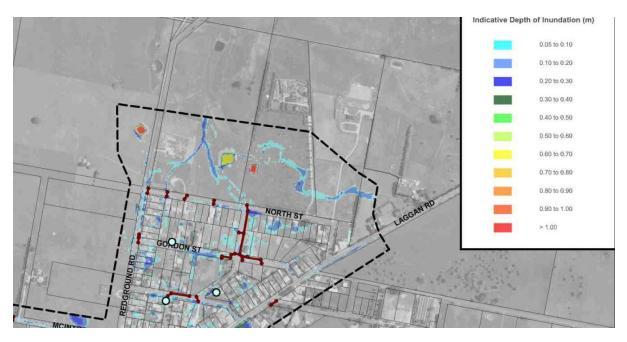


Figure 41: 1% AEP - Depths – Pre-Development Upper Lachlan Shire Council Study

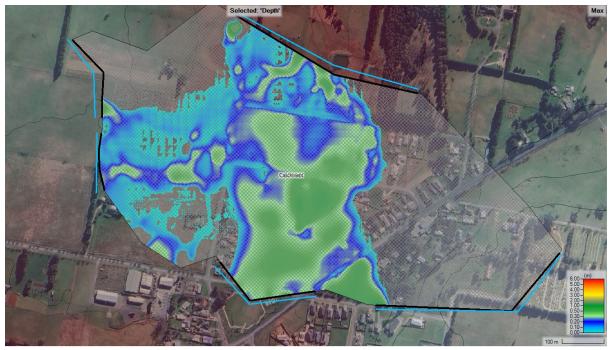


Figure 42: PMF - Depths - Pre-Development model

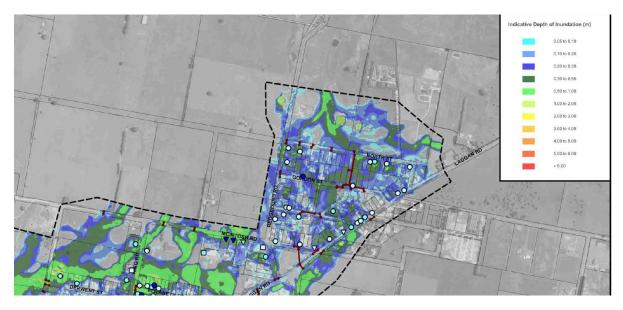


Figure 43: PMF - Depths - Pre-Development Upper Lachlan Shire Council Study

As shown in figures 40 to 43, the flood depths of this assessment are very similar to the Upper Lachlan Shire Council for the 1% and the PMF. Although the Study by the Upper Lachlan Shire Council has a different Catchment area and size, it can easily be seen the two studies have similarities. As mentioned, the one difference between the studies is that the catchment analysed is different. The site of 39 Redground and the associated catchment to the west of Redground Road, which is the subject of this FIRA, was not analysed in the Upper Lachlan Council study.

5. Conclusions

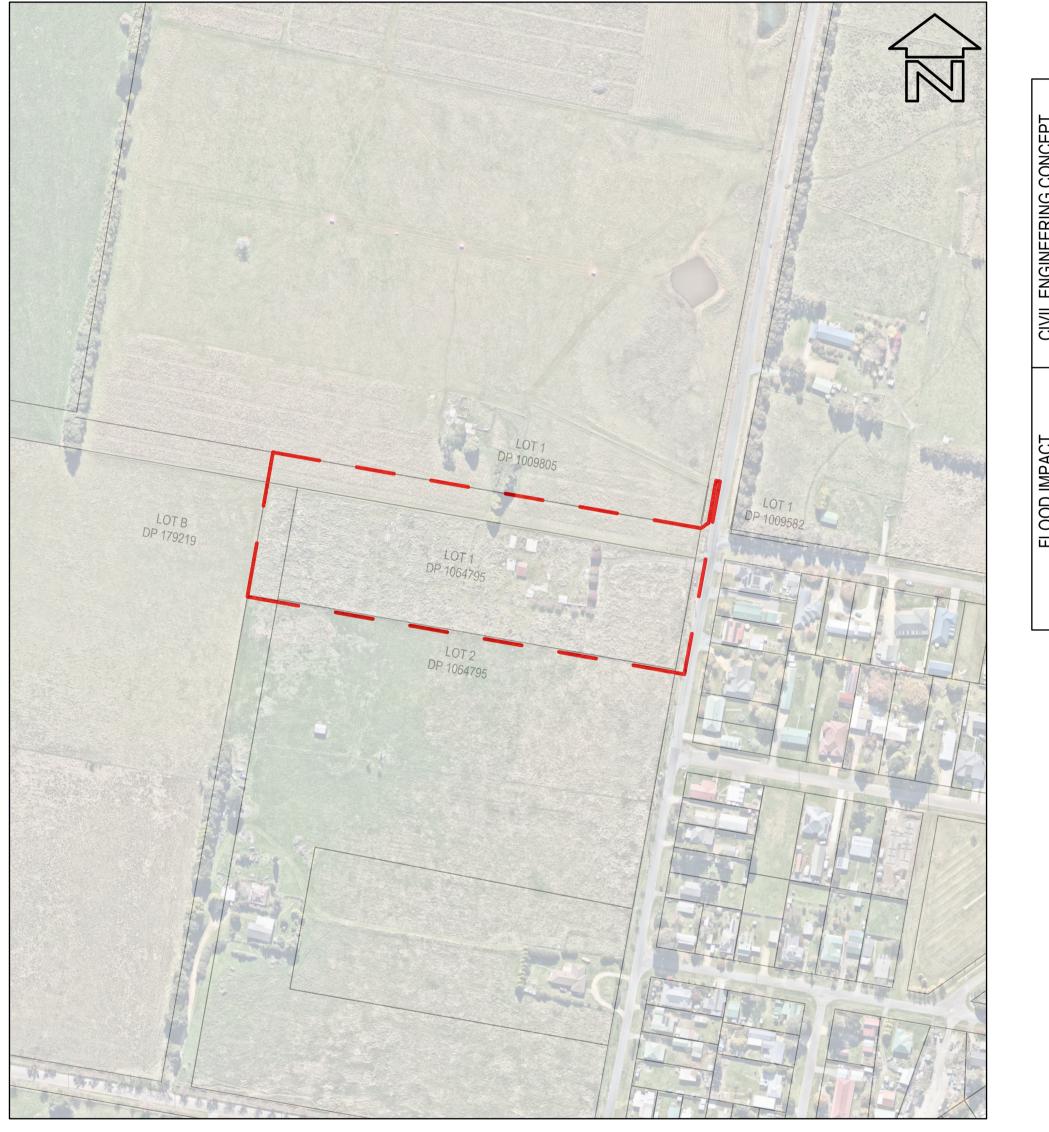
This report has summarised the outcomes of a flood impact assessment that was completed to support the viability of a proposed residential development at 39 Redground Rd, Crookwell, by

analysing the flood behaviour for the pre-development and post-development scenarios and the impacts on the flood characteristics upstream and downstream of the subject site.

Pre-development and post-development conditions have been modelled using HEC-RAS and performed using unsteady flow analysis, with internal and external catchments and hydrographic data being analysed with storm durations up to 9 hours using DRAINS (RAFTS model). Please refer to civil engineering sheet set reference number 23017_P0 prepared by CivPlan in Appendix A for all flood mappings and analysis performed for this assessment, including depths, WSE, hazard and WSE comparison map for all scenarios including the 10%, 1% AEP and PMF events.

This assessment demonstrates that the development is viable in terms of a flood perspective, with the development lots being above the 1% AEP events, without significantly impacting the surrounding properties. Appropriate flood planning levels (FPLs) 0.5m above the 1% AEP flood water level will need to be specified during the design and approval phase.

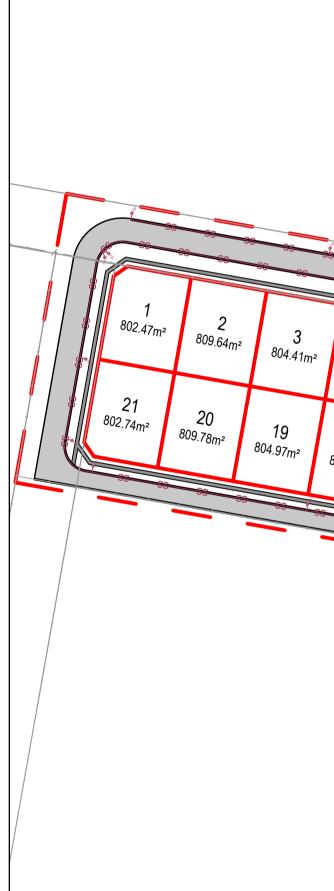
For the 10% and 1% AEP, the flows were all contained within the road reserves with generally safe values, noting that the introduction of a stormwater pit and pipe network will further improve the overland flow results. Further analysis will be undertaken at detailed phase to treat this water via this stormwater drainage and overland flow paths.


For the PMF, the flood inundation spills the road reserve boundaries and into the lots of 39 Redground, though this is generally of a very minor depth, is H1 hazard categorisation and is mostly contained within the front boundary setback. Despite this there is still safe access and egress to the lots within the 39 Redground subject site as the roads are low hazard to vehicles, generally H1 or at worst H2.

Please refer to civil engineering sheet set reference number 23017_P0 prepared by CivPlan in Appendix D for all the flood mappings and analysis performed for this assessment, including depths, WSE, hazard and WSE comparison map for both scenarios for the 10% and 1% AEP events.

Appendix A

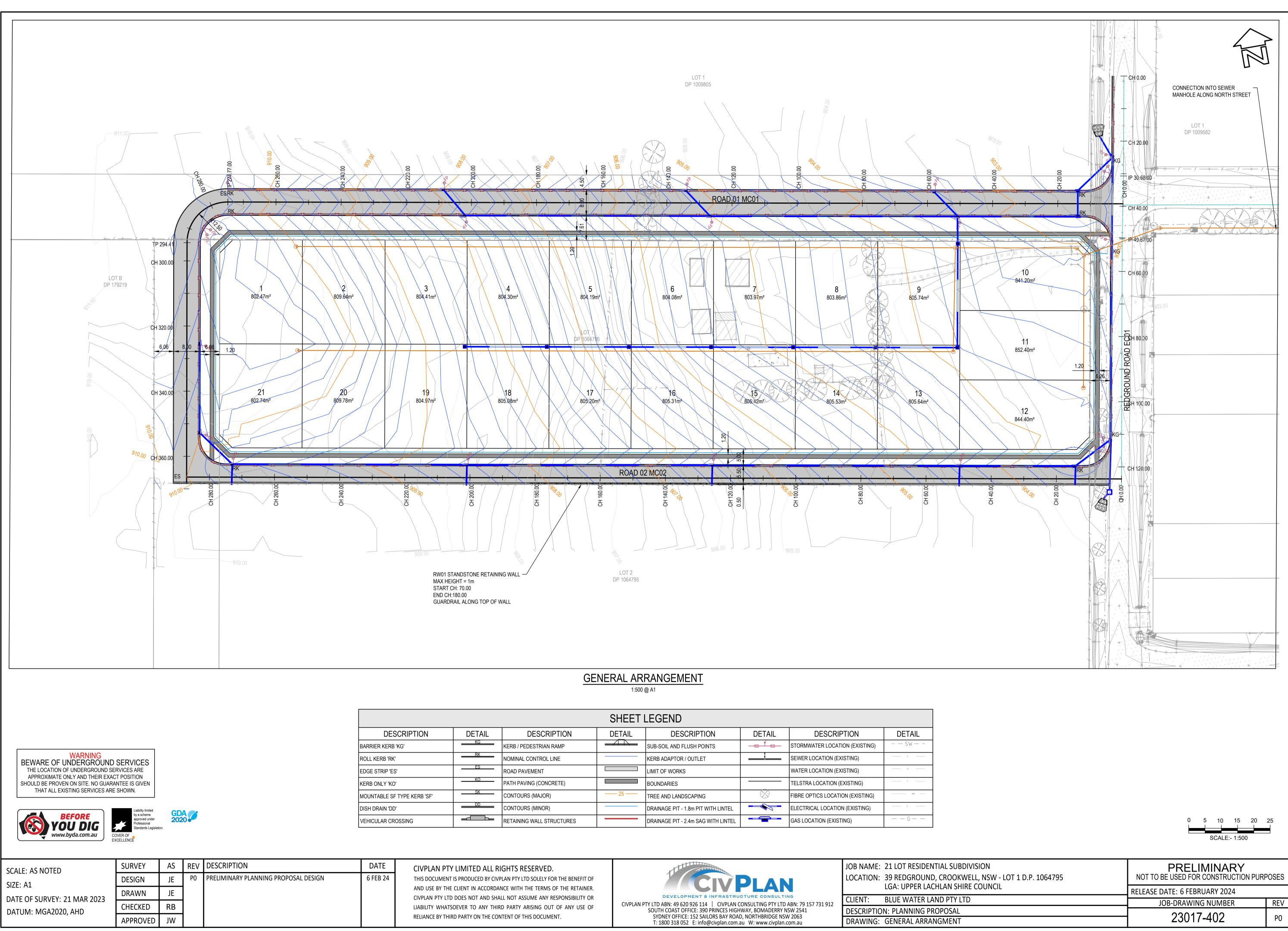
Catchment Analysis & Flood Maps


39 REDGROUND RD, CROOKWELL, NSW - LOT 1 D.P 1064795 **21 LOT RESIDENTIAL SUBDIVISION** CIVIL ENGINEERING CONCEPT DESIGN & FLOOD IMPACT ASSESSMENT UPPER LACHLAN SHIRE COUNCIL PLANNING PROPOSAL APPLICATION N

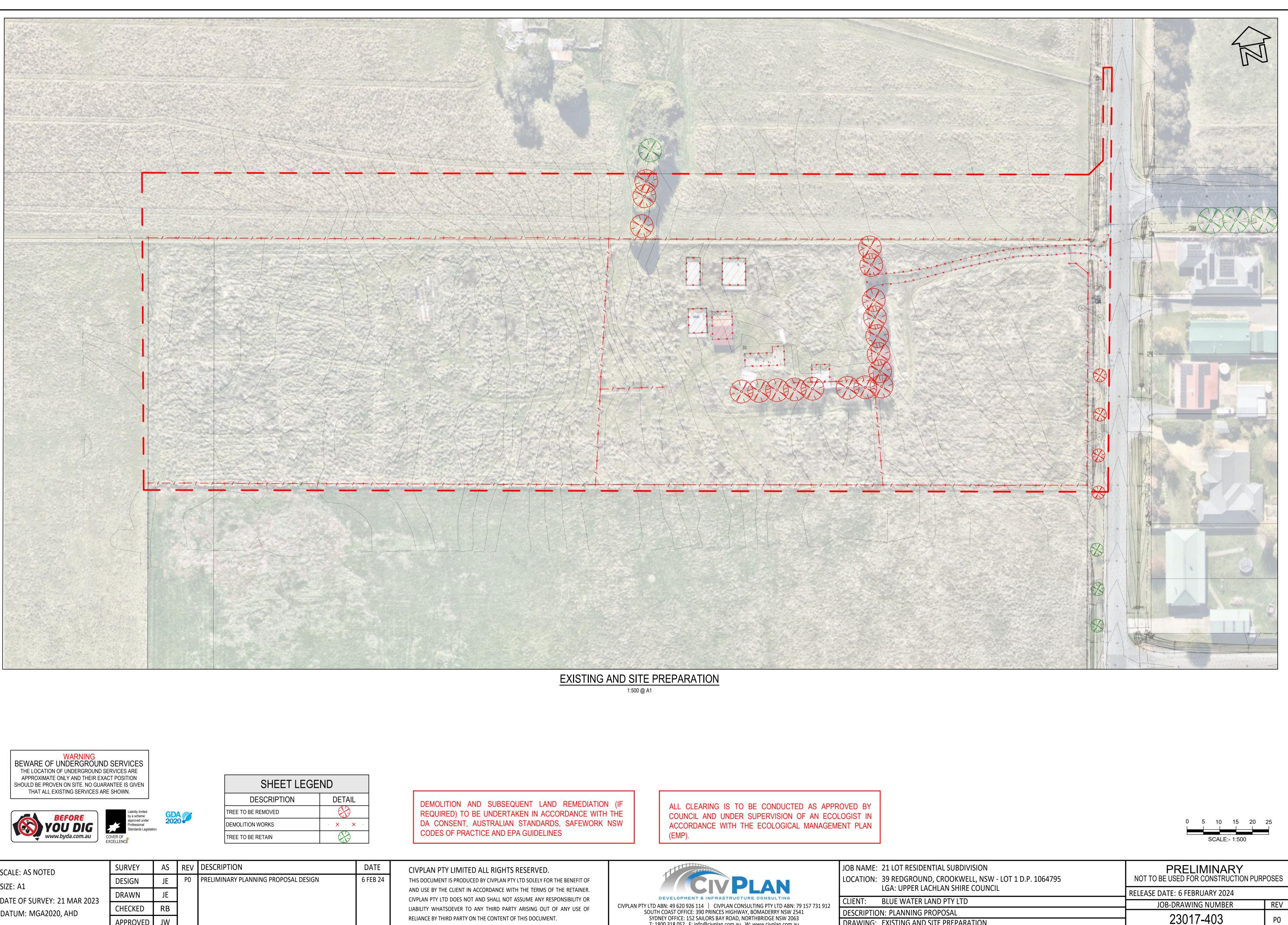
SITE LOCALITY PLAN 1:2500 @ A1

			1			
SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LIMITED
SIZE: A1	DESIGN	JE	PO	PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS PRODUCE
DATE OF SURVEY: 21 MAR 2023	DRAWN	JE	1			AND USE BY THE CLIENT IN A CIVPLAN PTY LTD DOES NOT A
DATE OF SORVEY. 21 MAR 2023 DATUM: MGA2020, AHD	CHECKED	RB]			LIABILITY WHATSOEVER TO A
	APPROVED	JW				RELIANCE BY THIRD PARTY ON

DRAWING SCHEDULE INDEX				
SHEET	TITLE	REV		
23017-401	COVER AND INDEX	P0		
23017-402	GENERAL ARRANGEMENT PLAN	P0		
23017-403	EXISTING AND SITE PREPARATION PLAN	P0		
23017-404	SOIL AND WATER MANAGEMENT PLAN	P0		
23017-405	SOIL AND WATER MANAGEMENT DETAILS	P0		
23017-406	BULK EARTHWORKS PLAN	P0		
23017-407	ROAD 01 MC01 LONGITUDINAL AND TYPICAL SECTIONS	P0		
23017-408	ROAD 01 MC02 LONGITIDINAL AND TYPICAL SECTION	P0		
23017-409	DRAINAGE LAYOUT PLAN	P0		
23017-410	STORMWATER QUANTITY MODELLING PLAN	P0		
23017-411	CATCHMENT ANALYSIS PLAN	P0		
23017-412	DRAINS MODELLING AND RESULTS	P0		
23017-413	PRE DEVELOPMENT & POST DEVELOPMENT 10% & 1% AEP RESULTS - DEPTHS	P0		
23017-414	PRE DEVELOPMENT & POST DEVELOPMENT PMF RESULTS - DEPTHS	P0		
23017-415	PRE DEVELOPMENT & POST DEVELOPMENT 10% & 1% AEP RESULTS - WSE	P0		
23017-416	PRE DEVELOPMENT & POST DEVELOPMENT PMF RESULTS - WSE	P0		
23017-417	PRE DEVELOPMENT & POST DEVELOPMENT 10% & 1% AEP RESULTS - VxD	P0		
23017-418	PRE DEVELOPMENT & POST DEVELOPMENT PMF - VxD	P0		
23017-419	PRE & POST DEVELOPMENT 10%, 1% AEP & PMF - WAY DRY NOW WET	P0		



	LIENT:	39 REDGROUND, CROOKWELL, NSW LGA: UPPER LACHLAN SHIRE COUNC BLUE WATER LAND PTY LTD	
DESCRIPTION: PLANNING PROPOSAL DRAWING: COVER AND INDEX			



ED ALL RIGHTS RESERVED. CED BY CIVPLAN PTY LTD SOLELY FOR THE BENEFIT OF ACCORDANCE WITH THE TERMS OF THE RETAINER. T AND SHALL NOT ASSUME ANY RESPONSIBILITY OR ANY THIRD PARTY ARISING OUT OF ANY USE OF ON THE CONTENT OF THIS DOCUMENT.

18 18 105.08m ² 18 17 16 805.20m ² 804.08m ² 16 805.31m ² 804.08m ² 803.97m ² 16 805.31m ² 803.97m ² 805.97m ² 80	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
LOT 2 DP 1064795		
GENERAL OVERVIEW 1:1250 @ A1		
0 25 50	75 100 150 0 10 20 30 40 50 ALE:- 1:2500 SCALE:- 1:1250	
V - LOT 1 D.P. 1064795 CIL	PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURF	POSES
	RELEASE DATE: 6 FEBRUARY 2024	
	JOB-DRAWING NUMBER 23017-401	REV P0

	SHEET LEGEND							
ETAIL	DESCRIPTION	DETAIL	DESCRIPTION	DETAIL	DESCRIPTION	DETAIL		
	KERB / PEDESTRIAN RAMP		SUB-SOIL AND FLUSH POINTS	ssss	STORMWATER LOCATION (EXISTING)	- — SW — -		
RK	NOMINAL CONTROL LINE		KERB ADAPTOR / OUTLET		SEWER LOCATION (EXISTING)	S		
ES	ROAD PAVEMENT		LIMIT OF WORKS		WATER LOCATION (EXISTING)	W		
КО	PATH PAVING (CONCRETE)		BOUNDARIES		TELSTRA LOCATION (EXISTING)	——— T ———		
SK	CONTOURS (MAJOR)	25	TREE AND LANDSCAPING	(X)	FIBRE OPTICS LOCATION (EXISTING)	NBN		
DD	CONTOURS (MINOR)		DRAINAGE PIT - 1.8m PIT WITH LINTEL		ELECTRICAL LOCATION (EXISTING)	——— Е ———		
	RETAINING WALL STRUCTURES		DRAINAGE PIT - 2.4m SAG WITH LINTEL		GAS LOCATION (EXISTING)	— — G — —		

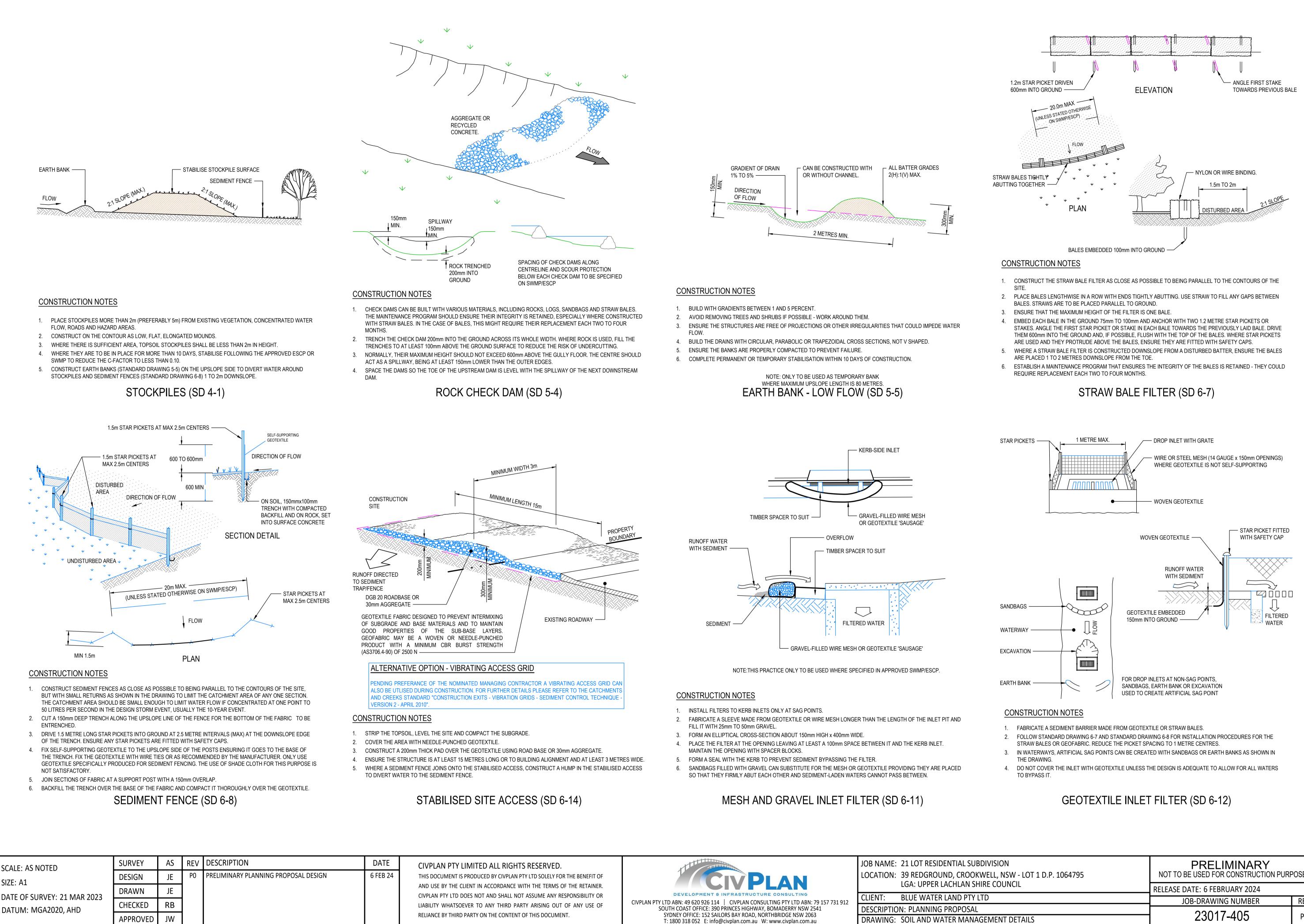
SHEET LEGEND						
DESCRIPTION	DETAIL					
TREE TO BE REMOVED						
DEMOLITION WORKS	$\cdot \mathbf{x} \cdot \mathbf{x}$					
TREE TO BE RETAIN	ÊÐ					

SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LI
SIZE: A1	DESIGN	JE	PO	PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS P
DATE OF SURVEY: 21 MAR 2023	DRAWN	JE				AND USE BY THE CLI CIVPLAN PTY LTD DC
DATE OF SURVET. 21 MAR 2023 DATUM: MGA2020, AHD	CHECKED	RB				LIABILITY WHATSOE
	APPROVED	JW				RELIANCE BY THIRD P

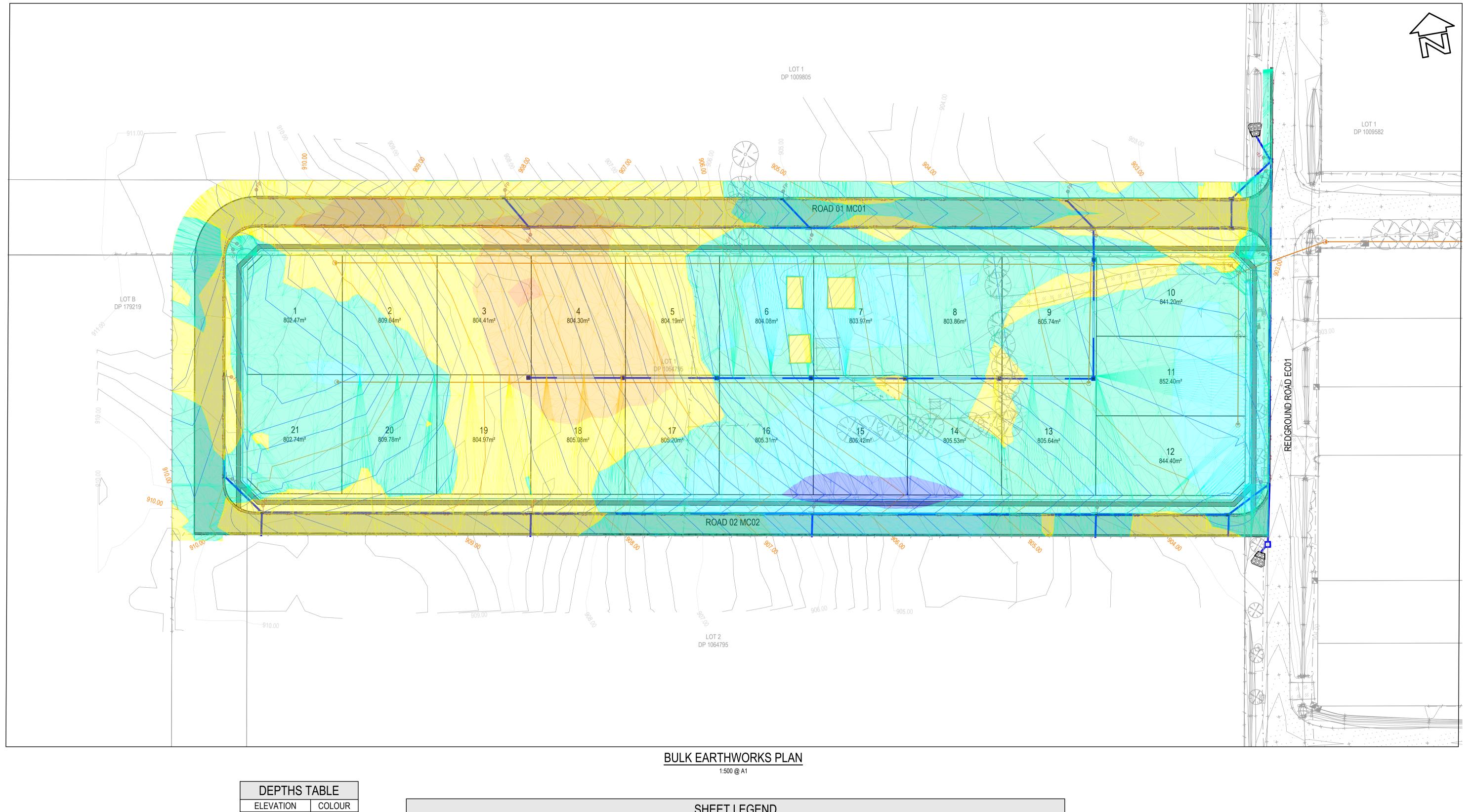
PARTY ON THE CONTENT OF THIS DOCUMENT.

DRAWING: EXISTING AND SITE PREPARATION

SOIL AND WATER MANAGEMENT PLAN
1:500 @ A1


APPROVED

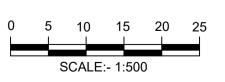
JW


		SHEET I	EGEND			
ΓAIL	DESCRIPTION	DETAIL	DESCRIPTION	DETAIL	DESCRIPTION	DETAIL
25 ——	GRAVEL INLET FILTER	Ç	HAYBALE FILTER		TOPSOIL STOCKPILES WITH DOWNSTREAM SILT FENCING	
••	STABILISED ACCESS / GRID & WHEEL WASH		GEOTEXTILE COVER		TEMPORARY SEDIMENT BASIN	

CIVPLAN PTY LIMITED ALL RIGHTS RESERVED. THIS DOCUMENT IS PRODUCED BY CIVPLAN PTY LTD SOLELY FOR THE BENEFIT OF AND USE BY THE CLIENT IN ACCORDANCE WITH THE TERMS OF THE RETAINER.		JOB NAME: 21 LOT RESIDENTIAL SUBDIVISION LOCATION: 39 REDGROUND, CROOKWELL, NSW LGA: UPPER LACHLAN SHIRE COUNCI
CIVPLAN PTY LTD DOES NOT AND SHALL NOT ASSUME ANY RESPONSIBILITY OR	CIVPLAN PTY LTD ABN: 49 620 926 114 CIVPLAN CONSULTING PTY LTD ABN: 79 157 731 912	CLIENT: BLUE WATER LAND PTY LTD
LIABILITY WHATSOEVER TO ANY THIRD PARTY ARISING OUT OF ANY USE OF	SOUTH COAST OFFICE: 390 PRINCES HIGHWAY, BOMADERRY NSW 2541	DESCRIPTION: PLANNING PROPOSAL
RELIANCE BY THIRD PARTY ON THE CONTENT OF THIS DOCUMENT.	SYDNEY OFFICE: 152 SAILORS BAY ROAD, NORTHBRIDGE NSW 2063 T: 1800 318 052 E: info@civplan.com.au W: www.civplan.com.au	DRAWING: SOIL AND WATER MANAGEMENT PLA

		0010
	RELEASE DATE: 6 FEBRUARY 2024	
	JOB-DRAWING NUMBER	REV
AN	23017-404	PO

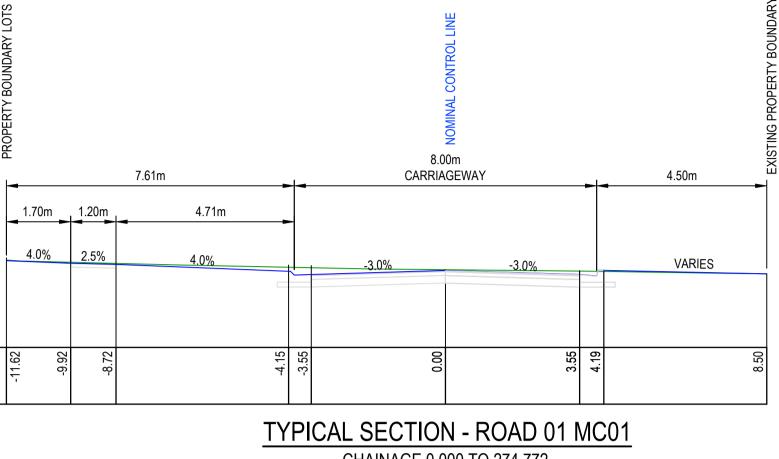
W - LOT 1 D.P. 1064795 ICIL NOT TO BE USED FOR CONSTRUCTION PURPOSES RELEASE DATE: 6 FEBRUARY 2024 JOB-DRAWING NUMBER REV 23017-405 P0			
RELEASE DATE: 6 FEBRUARY 2024 JOB-DRAWING NUMBER REV 22017 405 PO			POSES
	ICIL	RELEASE DATE: 6 FEBRUARY 2024	
23017-405 ро		JOB-DRAWING NUMBER	REV
	DETAILS	23017-405	PO

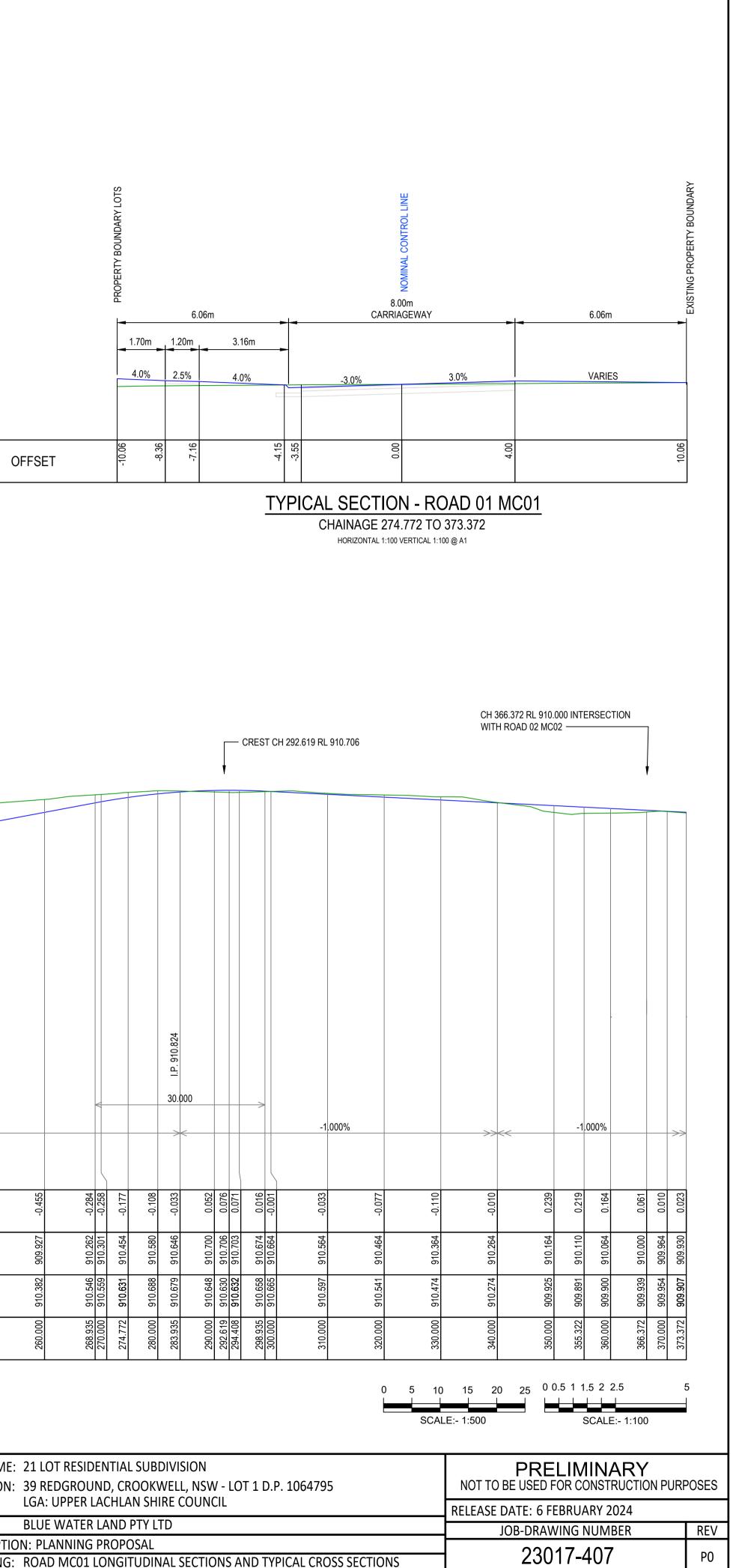

DEPTHS TABLE						
ELEVATION	COLOUR					
3.00 to 2.50						
2.50 to 2.00						
2.00 to 1.50						
1.50 to 1.00						
1.00 to 0.50						
0.50 to 0.00						
0.00 to -0.50						
-0.50 to -1.00						
-1.00 to -1.50						
-1.50 to -2.00						
-2.00 to -2.50						
-2.50 to -3.00						

SHEET LEGEND							
DESCRIPTION	DETAIL	DESCRIPTION	DETAIL	DESCRIPTION	DETAIL	DESCRIPTION	DETAIL
BARRIER KERB 'KG'	KG	KERB / PEDESTRIAN RAMP		SUB-SOIL AND FLUSH POINTS	<u>ss</u> s-	STORMWATER LOCATION (EXISTING)	- — SW — -
ROLL KERB 'RK'	RK	NOMINAL CONTROL LINE		KERB ADAPTOR / OUTLET		SEWER LOCATION (EXISTING)	S
EDGE STRIP 'ES'	ES	ROAD PAVEMENT		LIMIT OF WORKS		WATER LOCATION (EXISTING)	W
KERB ONLY 'KO'	КО	PATH PAVING (CONCRETE)		BOUNDARIES		TELSTRA LOCATION (EXISTING)	—— T ——
MOUNTABLE SF TYPE KERB 'SF'	SK	CONTOURS (MAJOR)	25	TREE AND LANDSCAPING		FIBRE OPTICS LOCATION (EXISTING)	NBN
DISH DRAIN 'DD'	DD	CONTOURS (MINOR)		DRAINAGE PIT - 1.8m PIT WITH LINTEL		ELECTRICAL LOCATION (EXISTING)	——— Е ———
VEHICULAR CROSSING		RETAINING WALL STRUCTURES		DRAINAGE PIT - 2.4m SAG WITH LINTEL		GAS LOCATION (EXISTING)	— — G — —

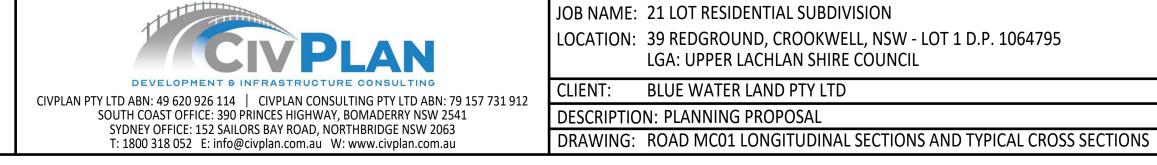
SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LIMITED
SIZE: A1	DESIGN	JE	P0	PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS PRODUCED
DATE OF SURVEY: 21 MAR 2023	DRAWN	JE	1			AND USE BY THE CLIENT IN AC CIVPLAN PTY LTD DOES NOT A
DATE OF SURVEY. 21 MAR 2025 DATUM: MGA2020, AHD	CHECKED	RB	1			LIABILITY WHATSOEVER TO A
	APPROVED	JW				RELIANCE BY THIRD PARTY ON T

VOLUME SUM	IMARY TABLE
ITEM	AMOUNT
TOTAL CUT	3,363m³
TOTAL FILL	5,806m³
NET VOLUME (FILL)	2,443m³
TOTAL CUT AREA	10,827m²
TOTAL FILL AREA	17,103m²
TOTAL WORKS AREA	27,930m²

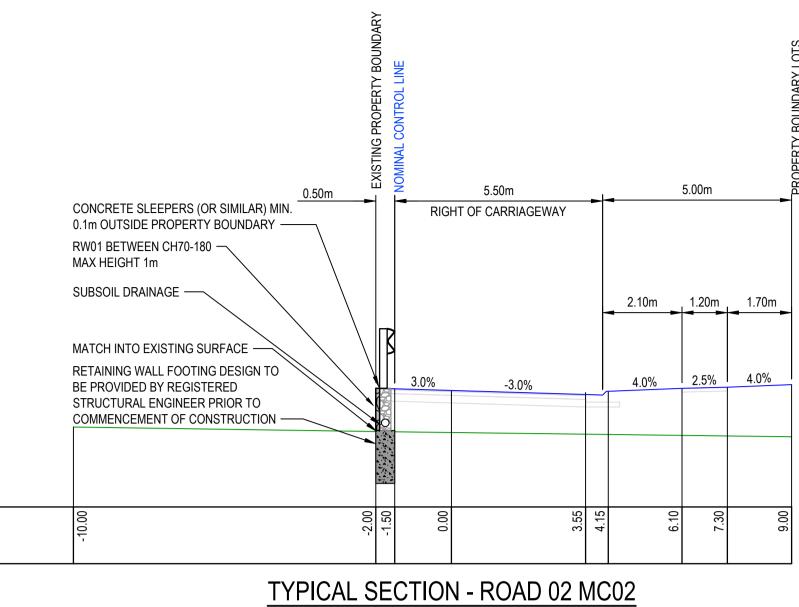

JOB NAME: 21 LOT RESIDENTIAL SUBDIVISION ED ALL RIGHTS RESERVED. LOCATION: 39 REDGROUND, CROOKWELL, NSW LGA: UPPER LACHLAN SHIRE COUNCI CED BY CIVPLAN PTY LTD SOLELY FOR THE BENEFIT OF ACCORDANCE WITH THE TERMS OF THE RETAINER. AND SHALL NOT ASSUME ANY RESPONSIBILITY OR DEVELOPMENT & INFRASTRUCTURE CONSULTING CLIENT: BLUE WATER LAND PTY LTD CIVPLAN PTY LTD ABN: 49 620 926 114 | CIVPLAN CONSULTING PTY LTD ABN: 79 157 731 912 ANY THIRD PARTY ARISING OUT OF ANY USE OF SOUTH COAST OFFICE: 390 PRINCES HIGHWAY, BOMADERRY NSW 2541 DESCRIPTION: PLANNING PROPOSAL SYDNEY OFFICE: 152 SAILORS BAY ROAD, NORTHBRIDGE NSW 2063 T: 1800 318 052 E: info@civplan.com.au W: www.civplan.com.au N THE CONTENT OF THIS DOCUMENT. DRAWING: BULK EARTHWORKS PLAN

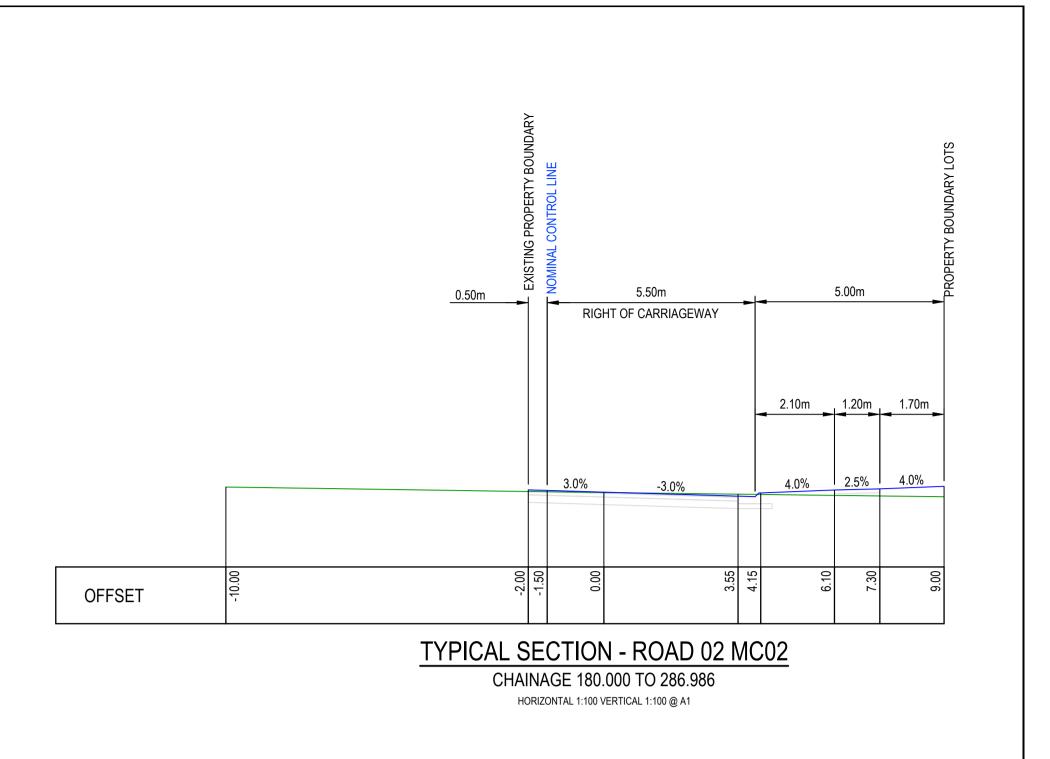


W - LOT 1 D.P. 1064795	PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURF	POSES
ICIL	RELEASE DATE: 6 FEBRUARY 2024	
	JOB-DRAWING NUMBER	REV
	23017-406	PO

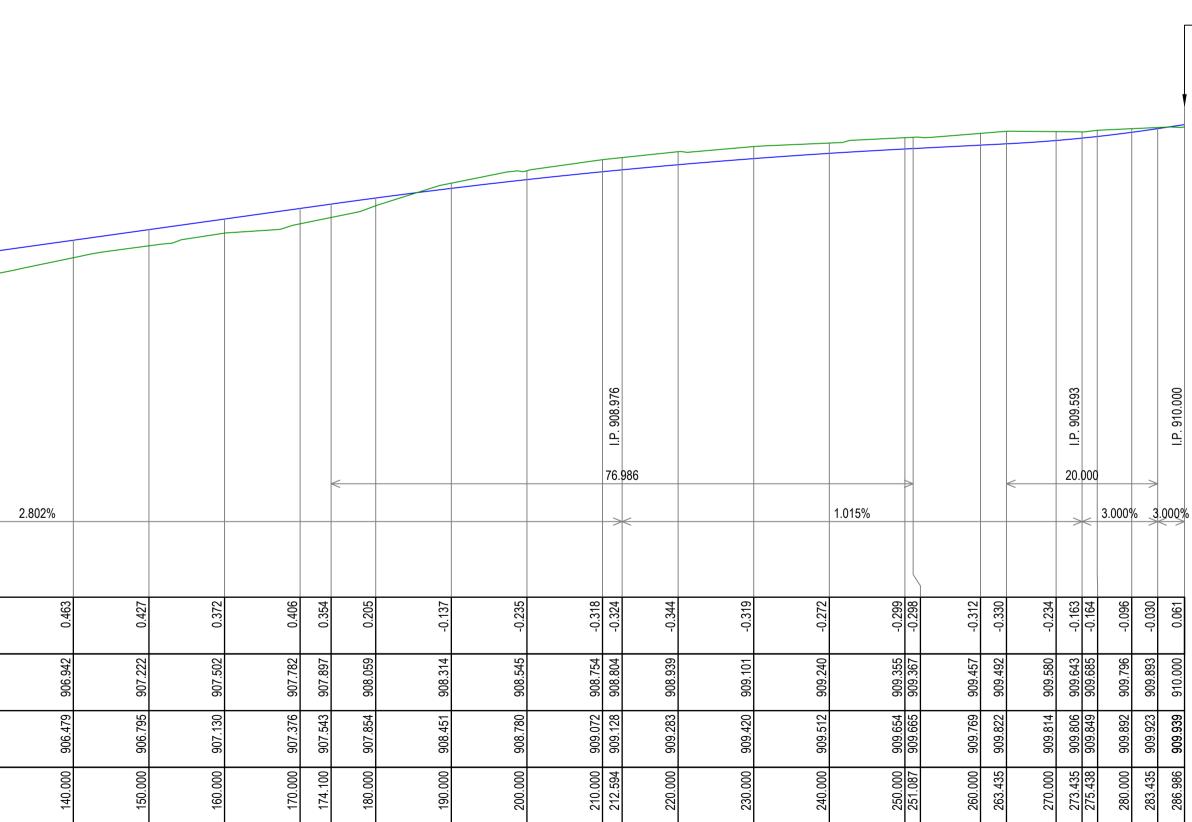

					LOL LINE	<u>0.45m</u>	<u>6.26m</u>				PROPERTY BOUNDARY LOTS					NOMINAL CONTROL LINE 8.00m								אדר ו עם אחוווויהם עדם זמרים ה			
					IINAL CONT		3.36m	1.20m 1.70m			◄ 1.70m	7.61m	4.71m			CARRIAGE	EWAY		4.50m		5			ŀ	1.70m	6.06	δm
					WON		4.0%	2.5% 4.0%			4.0%		4.0%		-3.0%	/o	-3.0%		VAR	ES				- 		2.5%	•
OFFSET	-10.00				0.00	3.05	6.85	8.05 8.75 9.75	[OFFSET		-9.92 -8.72		-4.15)) ;	0.00		3.55		8.50		(OFFSET	e (-10.06 -8.36	-7.16	
		TYP			- REDGR E 0.000 TO 11		EC01		L		I			TYP	ICAL SE		- ROAD)1					I		_	
.P. 902.964			02.699			2 118%				E90'906' d'1 39.5	947							3.749%								30.000	
R.L. 896.600																											
DEPTHS			-0.015	0.005	0.063	0.192	0.179	0.104	0.035	0.089		-0.050	-0.219	-0.339	-0.394	-0.535	-0.508	-0.412	-0.332	-0.318	-0.615	-0.666	-0.455	-0.284 -0.258	-0.177 -0.108		0.052
DESIGN	1 1111		903.146	903.358	903.570	903.782	903.994 904.205	904.417	904.629 904.630	904.861 905.134	905.1 905.4	905.802 905.803	906.177	906.552	906.927	907.302	907.677	908.052	908.427	908.802	909.177	909.552	909.927		910.454 910.580		910.700 910.706
EXISTING SURFACE			903.161	903.353	903.507	903.590	903.815 903.967	904.313	904.594 904.595	904.772 905.007	905.	905.852 905.853	906.396	906.891	907.321	907.837	908.185	908.464	908.759	909.120	909.792	910.218	910.382		910.631 910.688		910.648 910.630
CHAINAGE	0.001 10.000 11.323 11.713 13.052 14.740	20.000 23.052 30.000 30.000	40.000	50.000	60.000	70.000	80.000	100.000	110.000 110.032	120.000	130.00 <u>6</u> 140.000	149.979 150.000	160.000	170.000	180.000	190.000	200.000	210.000	220.000	230.000	240.000	250.000	260.000	268.935 270.000	274.77 <u>2</u> 280.000	283.935	290.000 292.619
												LONGITU	CHAIN	IAGE 0.00	ON - RO) TO 373.372 TICAL 1:100 @ A1		<u>MC01</u>										
CALE: AS NOTED)	SURVEY DESIGN	AS JE		SCRIPTION	INING PROPOSA	. DESIGN	DATE 6 FEB 24		PLAN PTY LIMITE				EFIT OF		T							21 LOT R 39 REDG	ROUND, (CROOKV	WELL, NS	SW - L
ZE: A1 ATE OF SURVEY:	21 MAR 2023	DRAWN							AND	use by the client in An pty Ltd does nc	N ACCORDANG	CE WITH THE TERMS	OF THE RET	AINER.		DEVE			DLA DTURE CONSUL			CLIENT:	LGA: UPF BLUE WA	PER LACH	ILAN SHI	IRE COUN	NCIL

SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LIMITED
SIZE: A1	DESIGN	JE	PO	PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS PRODUCED
•	DRAWN	JE	1			AND USE BY THE CLIENT IN AC CIVPLAN PTY LTD DOES NOT A
DATE OF SURVEY: 21 MAR 2023 DATUM: MGA2020, AHD	CHECKED	RB	1			LIABILITY WHATSOEVER TO A
	APPROVED	JW				RELIANCE BY THIRD PARTY ON



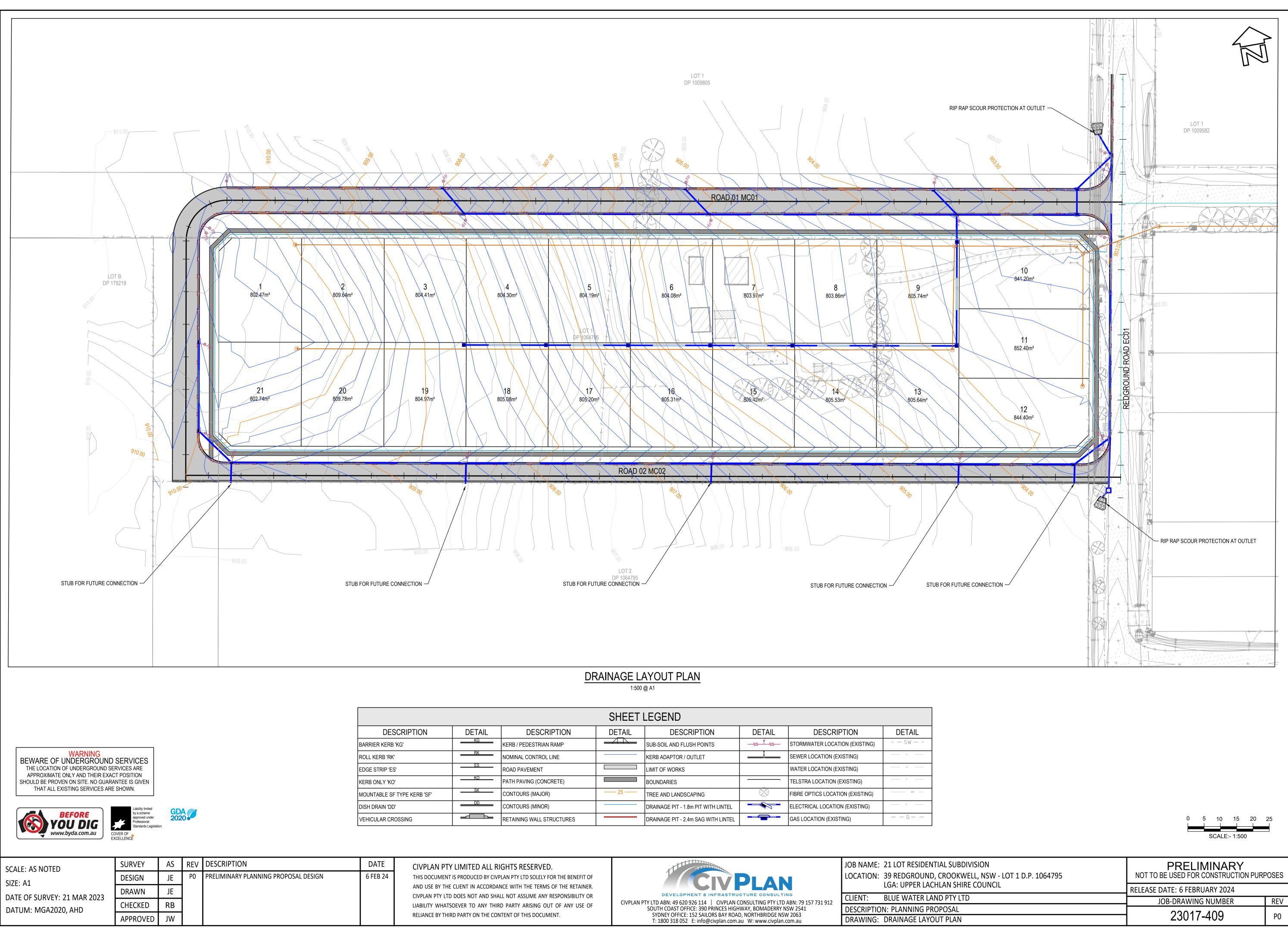

T AND SHALL NOT ASSUME ANY RESPONSIBILITY OR O ANY THIRD PARTY ARISING OUT OF ANY USE OF ON THE CONTENT OF THIS DOCUMENT.

						-	0.50m	EXISTING PROPERTY BOUNDARY		5.50m T OF CARRIAGE	WAY	-	5.00m		PROPERTY BOUNDARY LOTS		
												2.10m	1.20m	1.70m	-		
									3.0%	-3.0%		4.0%	2.5%	4.0%	 		
OFFSET		-10.00						-2.00 -1.50	0.00		3.55	4.15	0.10 7.30		00.6		OFF
						TYI	PICAL	 . SE		I - ROAD	02 M	 C02					
								CHAIN	NAGE 0.0	00 TO 70.00 ERTICAL 1:100 @ A1							
			770 INIT														
		00 RL 903. REDGROU	ID RD	EC01		626											
			ID RD	EC01	CTION .815 RL 903.	.626											
	WITH F	REDGROU	ID RD	EC01		9.626											
	WITH F	REDGROU	ID RD	EC01		.626			. 904.642								
		REDGROU	ND RD - SAG	EC01		.626			240.671								
	WITH F	REDGROU	ND RD - SAG	EC01		2.573%			40.671								
	WITH F	REDGROU	ND RD - SAG	EC01													
R.L. 897.500	WITH F 6/28/2006 d-1 2.9999% -2.9	20.000	ND RD - SAG	EC01 CH 13.	.815 RL 903.	2.573%			40.671								
R.L. 897.500	WITH F 6/28/2006 d-1 2.9999% -2.9	REDGROU	ND RD - SAG	EC01 CH 13.				0.128		0.095	0.440			0.886	0.797	0.706	
R.L. 897.500 DEPTHS	WITH F 6/28:06 2.9 6/28:06 2.9 0100 2.9	REDGROU	ND RD - SAG	EC01 CH 13.	.815 RL 903.	2.573% 51000- -0-002			40.671 0000 0000								
R.L. 897.500 DEPTHS DESIGN SURFACE	WITH F 628:006 -G-1 2.999% -2.9 600:0 -2.9 600:0 -2.9 600:0 -2.9	903.646 0.133 0.088 %66 %66 %66 %66 %66 %66 %66 %66 %66 %	ND RD - SAG - 0.042 - 0.045	EC01 CH 13. 003.745 -0.091	.815 RL 903. 03.324 -0.131	904.119 -0.045 5522 904.181 -0.005 502		904.443	904.654 0.060 004.654 0.019 004.710 0.019	904.982	905.212 905.212	905.541		905.821	906.101	906.381	
	WITH F 603.869 903.787 0.000 678.00 4.1 5.00 600.0 787 0.000 903.778 903.787 0.000 903.778 903.787 0.000 903.778 903.787 0.000	REDGROU	ND RD - SAG - 0.045 - 0.045	EC01 CH 13. 903.836 903.745 -0.091	.815 RL 903.	2.573% 51000- -0-002			40.671 0000 0000			904 725 905 541					


SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LIMITED
SIZE: A1	DESIGN	JE	PO	PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS PRODUCED
-	DRAWN	JE	1			AND USE BY THE CLIENT IN A CIVPLAN PTY LTD DOES NOT A
DATE OF SURVEY: 21 MAR 2023 DATUM: MGA2020, AHD	CHECKED	RB	1			LIABILITY WHATSOEVER TO A
DATOWI. WIGAZOZO, AND	APPROVED	JW	1			RELIANCE BY THIRD PARTY ON

HORIZONTAL 1:100 VERTICAL 1:100 @ A1

LONGITUDINAL SECTION - ROAD 02 MC02


CHAINAGE 0.000 TO 286.986 HORIZONTAL 1:500 VERTICAL 1:100 @ A1

TED ALL RIGHTS RESERVED. CED BY CIVPLAN PTY LTD SOLELY FOR THE BENEFIT OF ACCORDANCE WITH THE TERMS OF THE RETAINER. T AND SHALL NOT ASSUME ANY RESPONSIBILITY OR ANY THIRD PARTY ARISING OUT OF ANY USE OF ON THE CONTENT OF THIS DOCUMENT.

CH 286.986 RL 910.000 INTERSECTION WITH ROAD 01 MC01

	10 15 20 25 0 0.5 1 1.5 2 2.5 5 ALE:- 1:500 SCALE:- 1:100
V - LOT 1 D.P. 1064795	PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURPOSES
CIL	RELEASE DATE: 6 FEBRUARY 2024
	JOB-DRAWING NUMBER REV
ON AND TYPICAL CROSS SECTION	23017-408 ро

		SHEET I	EGEND			
TAIL	DESCRIPTION	DETAIL	DESCRIPTION	DETAIL	DESCRIPTION	DETAIL
	KERB / PEDESTRIAN RAMP		SUB-SOIL AND FLUSH POINTS	ssss	STORMWATER LOCATION (EXISTING)	- — SW — -
RK	NOMINAL CONTROL LINE		KERB ADAPTOR / OUTLET		SEWER LOCATION (EXISTING)	S
ES	ROAD PAVEMENT		LIMIT OF WORKS		WATER LOCATION (EXISTING)	W
КО	PATH PAVING (CONCRETE)		BOUNDARIES		TELSTRA LOCATION (EXISTING)	т
SK	CONTOURS (MAJOR)	<u> </u>	TREE AND LANDSCAPING	×	FIBRE OPTICS LOCATION (EXISTING)	NBN
DD	CONTOURS (MINOR)		DRAINAGE PIT - 1.8m PIT WITH LINTEL		ELECTRICAL LOCATION (EXISTING)	E
	RETAINING WALL STRUCTURES		DRAINAGE PIT - 2.4m SAG WITH LINTEL		GAS LOCATION (EXISTING)	— — G — —

CATCHMENT SUMMARY										
PRE-DEVELOPMENT										
SITE	2.73	ha	1%	IMPERVIOUS						
POS	T-DEVELOPMENT									
SITE - ROADS	1.03	ha	70%	IMPERVIOUS						
SITE - LOTS	1.70	ha	60%	IMPERVIOUS						

NOTE: THE UNDISTURBED VEGETATED AREA IS NOT INCLUDED ON THE STORMWATER QUANTITY AND QUALITY CALCULATIONS

LOT PERMISSIBLE SITE DISCHARGE (PSD) REQUIREMENT

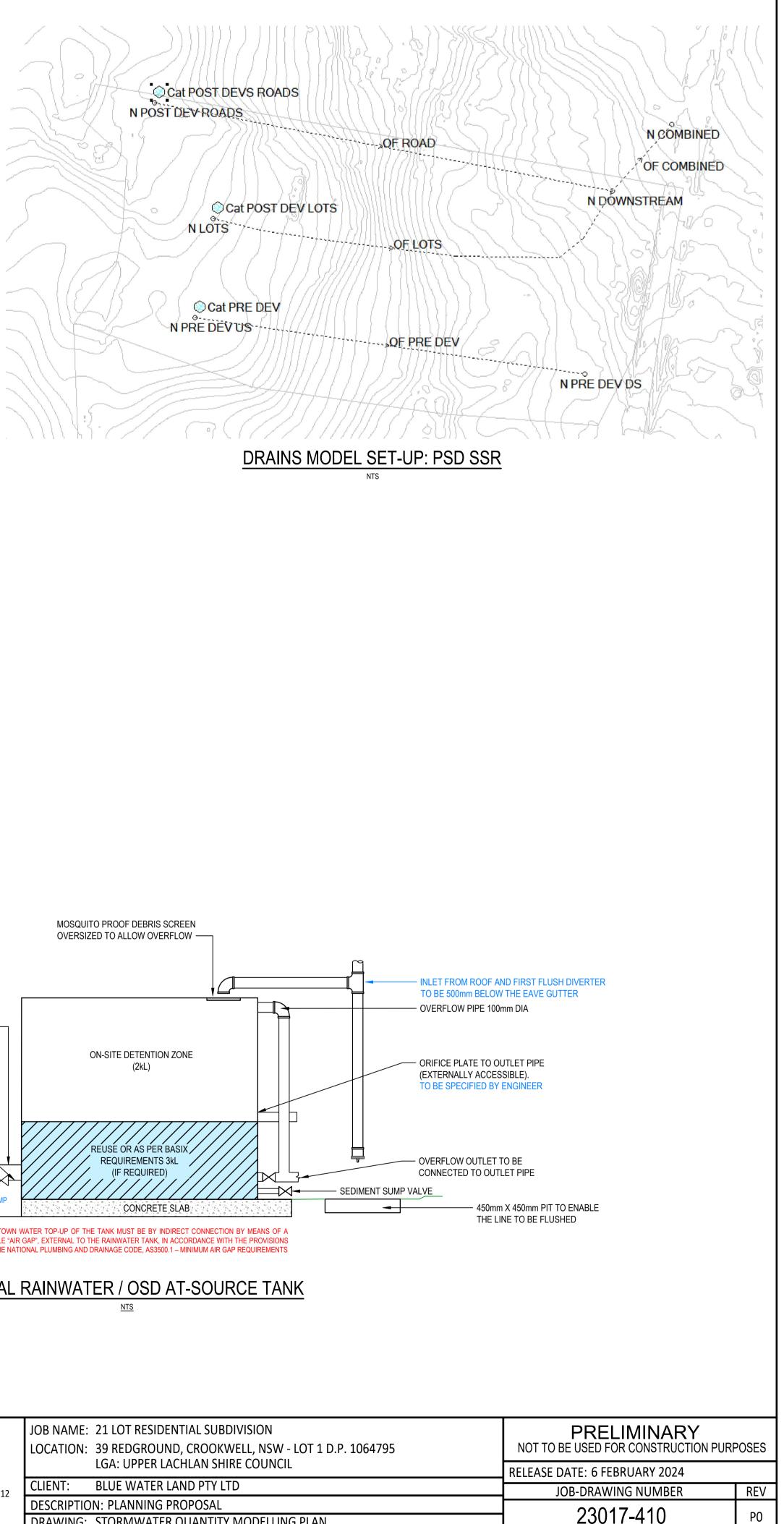
CRITICAL STORM (% AEP)	PRE DEV SITE (m3/s)	POST DEV LOTS (m3/s)	POST DEV ROADS (m3/s)	PRE DEV SITE - POST DEV ROADS (m3/s)	PSD REQUIRED FOR LOTS (m3/s/ha)	L/s/ha
50	0.131	0.120	0.069	0.062	0.02	22.71
20	0.263	0.198	0.115	0.148	0.05	54.21
10	0.333	0.247	0.145	0.188	0.07	68.86
5	0.384	0.282	0.166	0.218	0.08	79.85
2	0.448	0.329	0.196	0.252	0.09	92.31
1	0.499	0.364	0.217	0.282	0.10	103.30

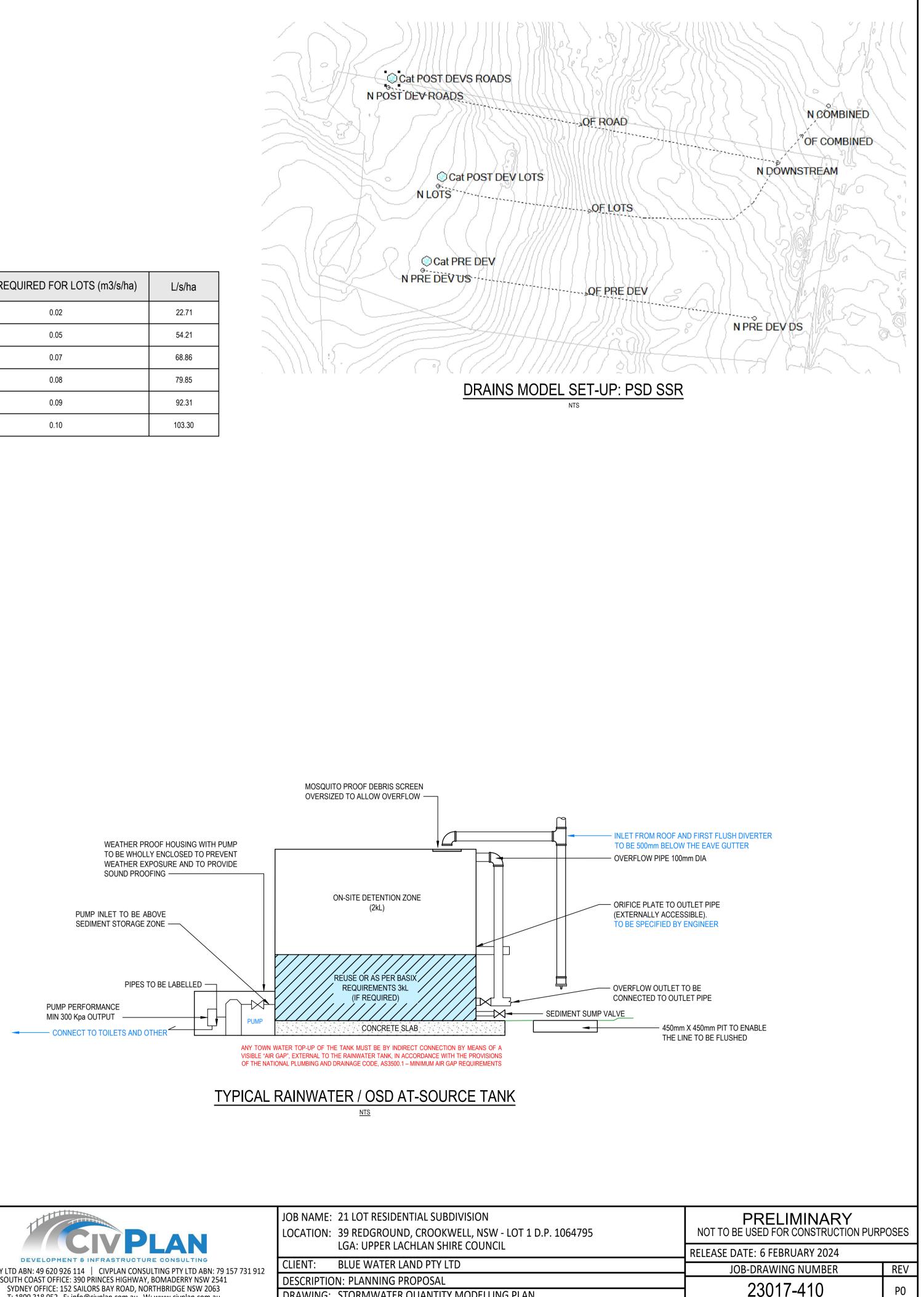
CONSIDERED LOT AREA: 2.73ha

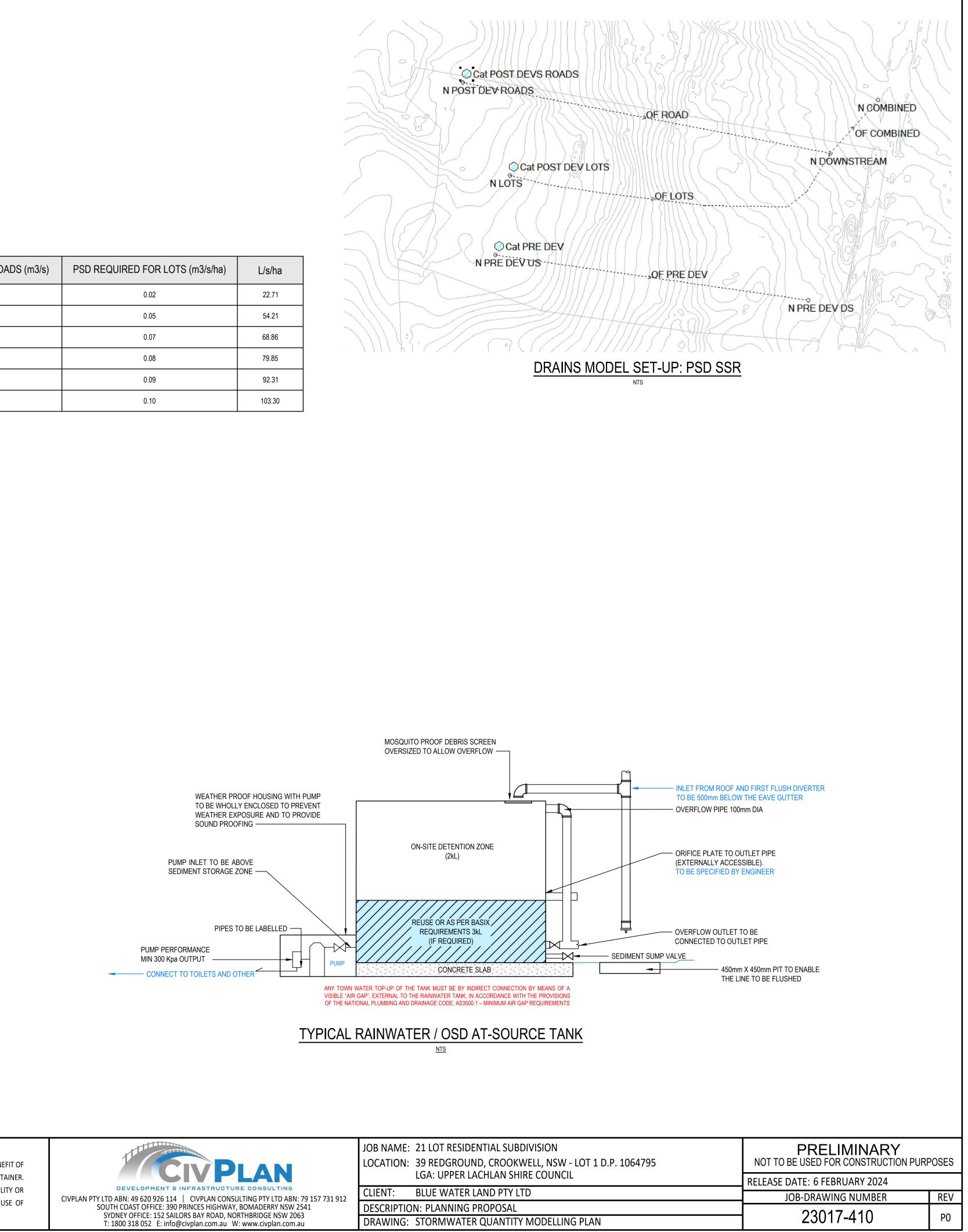
CRITICAL STORM IS THE MEDIAN OF THE RELEVANT 1 MIN TO 2 HOUR DURATION USING ARR2019 PROTOCOLS

SITE STORAGE (SSR) REQUIREMENT

CRITICAL STORM (% AEP)	PRE DEV VOL (m3)	POST DEV VOL (m3)	SSR FOR LOTS (m3)	m3/ha
1(2hr)	930.2	999.5	69.3	25

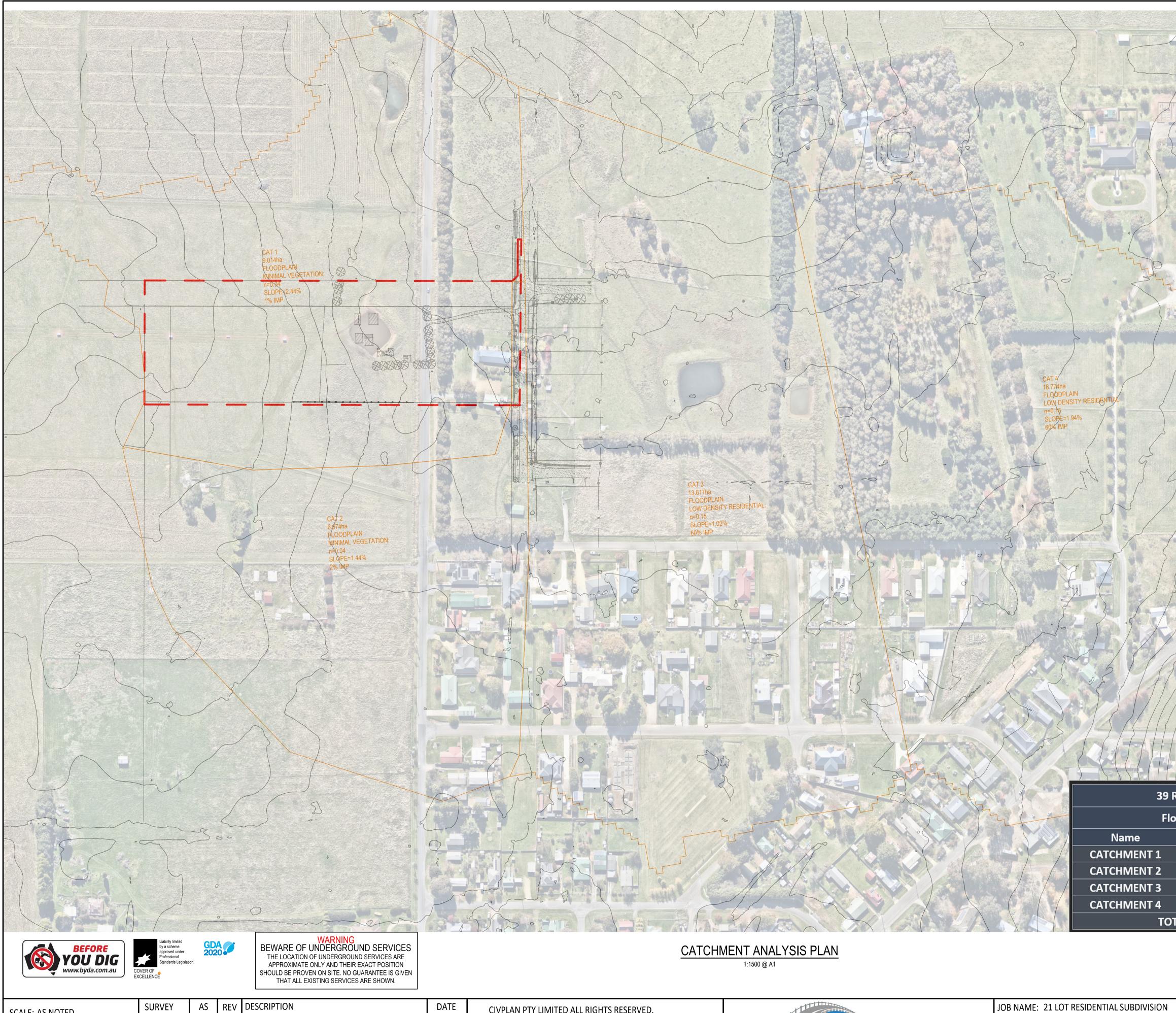

SUMMARY


EACH LOT IS TO :


- PROVIDE 25m³/ha OF OSD TO SATISFY THE SITE STORAGE REQUIREMENT (SSR)
- COMPLY WITH THE FOLLOWING PERMISSIBLE SITE DISCHARGE (PSD) FLOWS NOTING THAT THE FINAL DWELLING DESIGN TO BE CHECKED BY A COMPETENT ENGINEER:

% AEP	L/s/ha
50	28
20	54
10	69
5	80
2	92
1	103

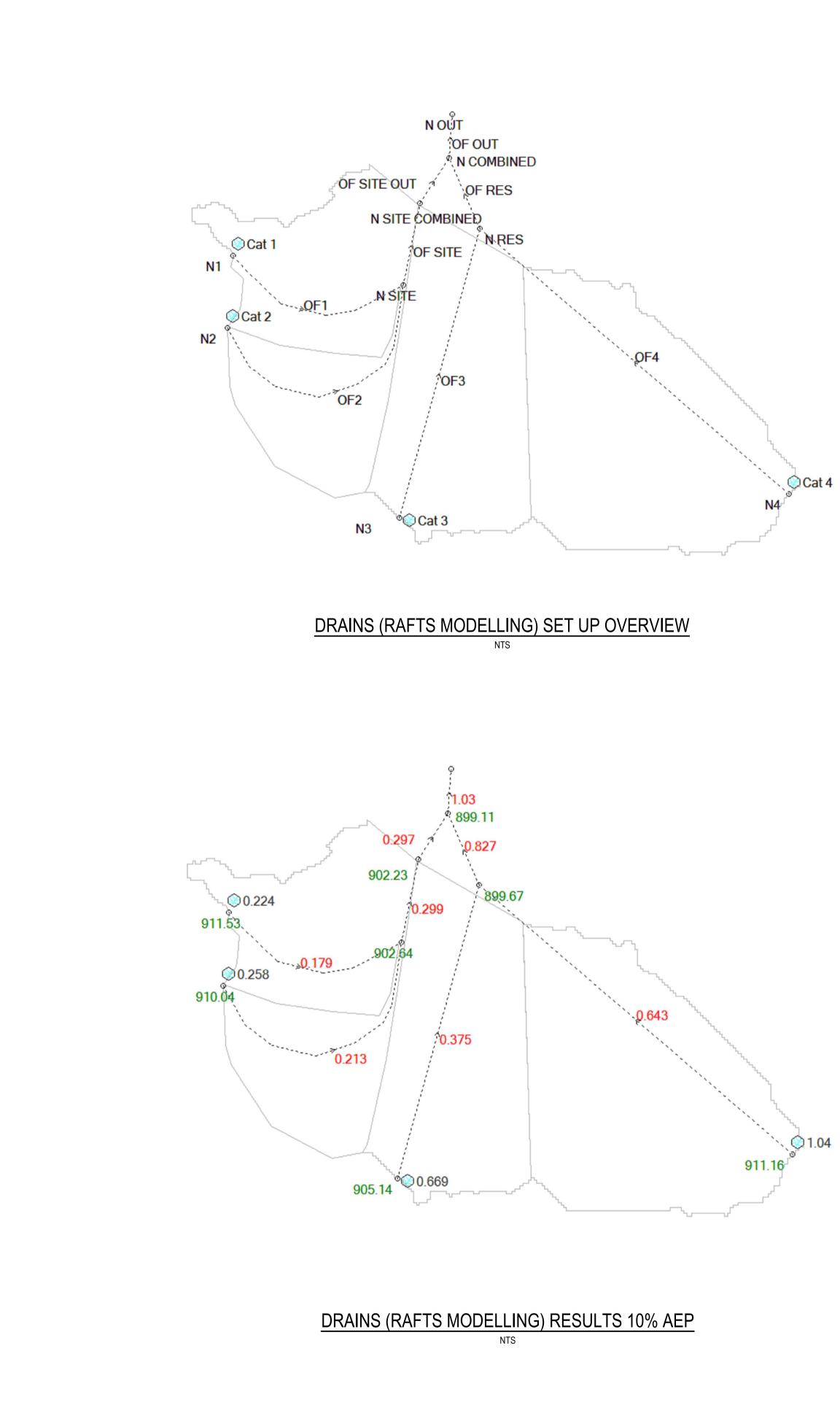
SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LIMITED
SIZE: A1	DESIGN	JE	PO	PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS PRODUCED
DATE OF SURVEY: 21 MAR 2023	DRAWN	JE				AND USE BY THE CLIENT IN AC CIVPLAN PTY LTD DOES NOT A
DATUM: MGA2020, AHD	CHECKED	RB	1			LIABILITY WHATSOEVER TO AN
	APPROVED	JW				RELIANCE BY THIRD PARTY ON 1



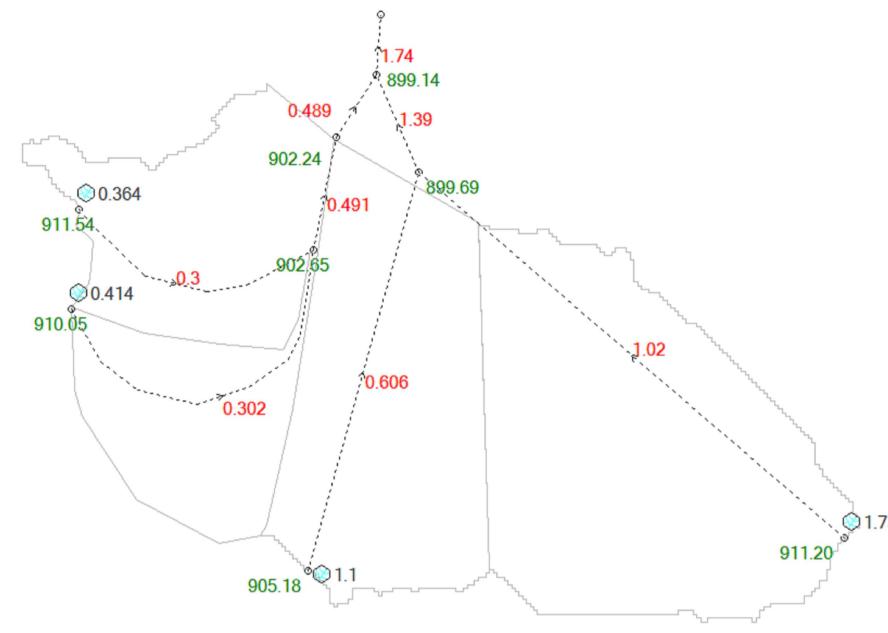
D ALL RIGHTS RESERVED. CED BY CIVPLAN PTY LTD SOLELY FOR THE BENEFIT OF ACCORDANCE WITH THE TERMS OF THE RETAINER.

AND SHALL NOT ASSUME ANY RESPONSIBILITY OR ANY THIRD PARTY ARISING OUT OF ANY USE OF THE CONTENT OF THIS DOCUMENT.

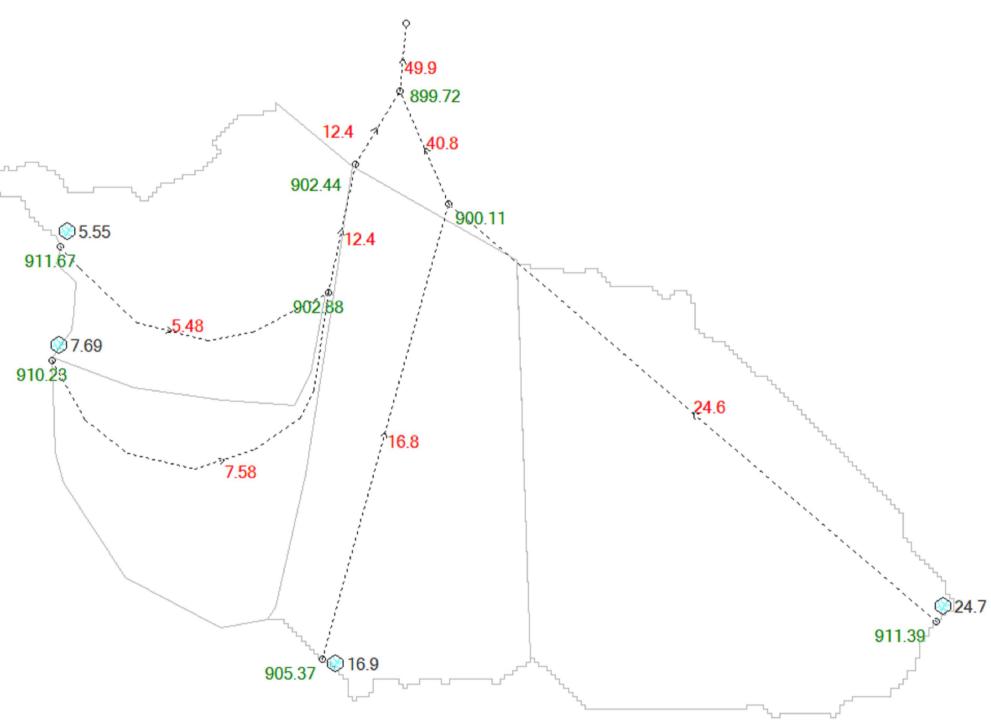
SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LIMIT
SIZE: A1	DESIGN	JE	P0	PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS PROD
SIZE. AI	DRAWN	JE				AND USE BY THE CLIENT
DATE OF SURVEY: 21 MAR 2023		JL				CIVPLAN PTY LTD DOES N
DATUM: MGA2020, AHD	CHECKED	RB				LIABILITY WHATSOEVER 1
	APPROVED	JW				RELIANCE BY THIRD PARTY


1ITED ALL RIGHTS RESERVED.

DUCED BY CIVPLAN PTY LTD SOLELY FOR THE BENEFIT OF T IN ACCORDANCE WITH THE TERMS OF THE RETAINER. NOT AND SHALL NOT ASSUME ANY RESPONSIBILITY OR R TO ANY THIRD PARTY ARISING OUT OF ANY USE OF TY ON THE CONTENT OF THIS DOCUMENT.



			0
			M
7			
		\sim	
		and and	
	~		m
		~ /	
		5	
N1 2.		- min	
ins °		5,	
the phase			
J M	mar 1	por -	
1 0/			
	1 th		
22	A (- / /	THE	
		13h	
5000			4
7 3			4.
N	MALL		Ch. S
			S orgen
1			
155	155	5 6	
			al Pai
\$ ////	5	a	pr fa
11///			0
1115 %			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	000
		215	
Redground Rd, Cr	ookwell, NSW – S	Sub <u>Catchments</u>	
ood Impact & Risk			
Area (ha)	Mannings N	Avg. Slope	Impervious
4.189 6.674	0.04	2.44% 1.44%	1% 2%
13.67	0.15	1.02%	60%
18.774	0.15	1.94% <b>43.307</b>	60% ha
		13.307	iii a

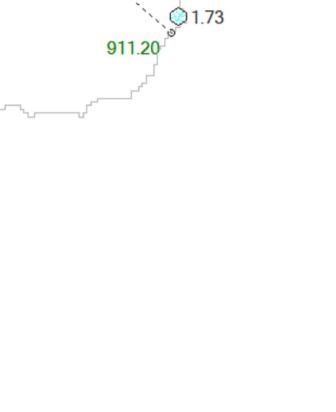

W - LOT 1 D.P. 1064795	PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURF	POSES
ICIL	RELEASE DATE: 6 FEBRUARY 2024	
	JOB-DRAWING NUMBER	REV
	23017-411	PO

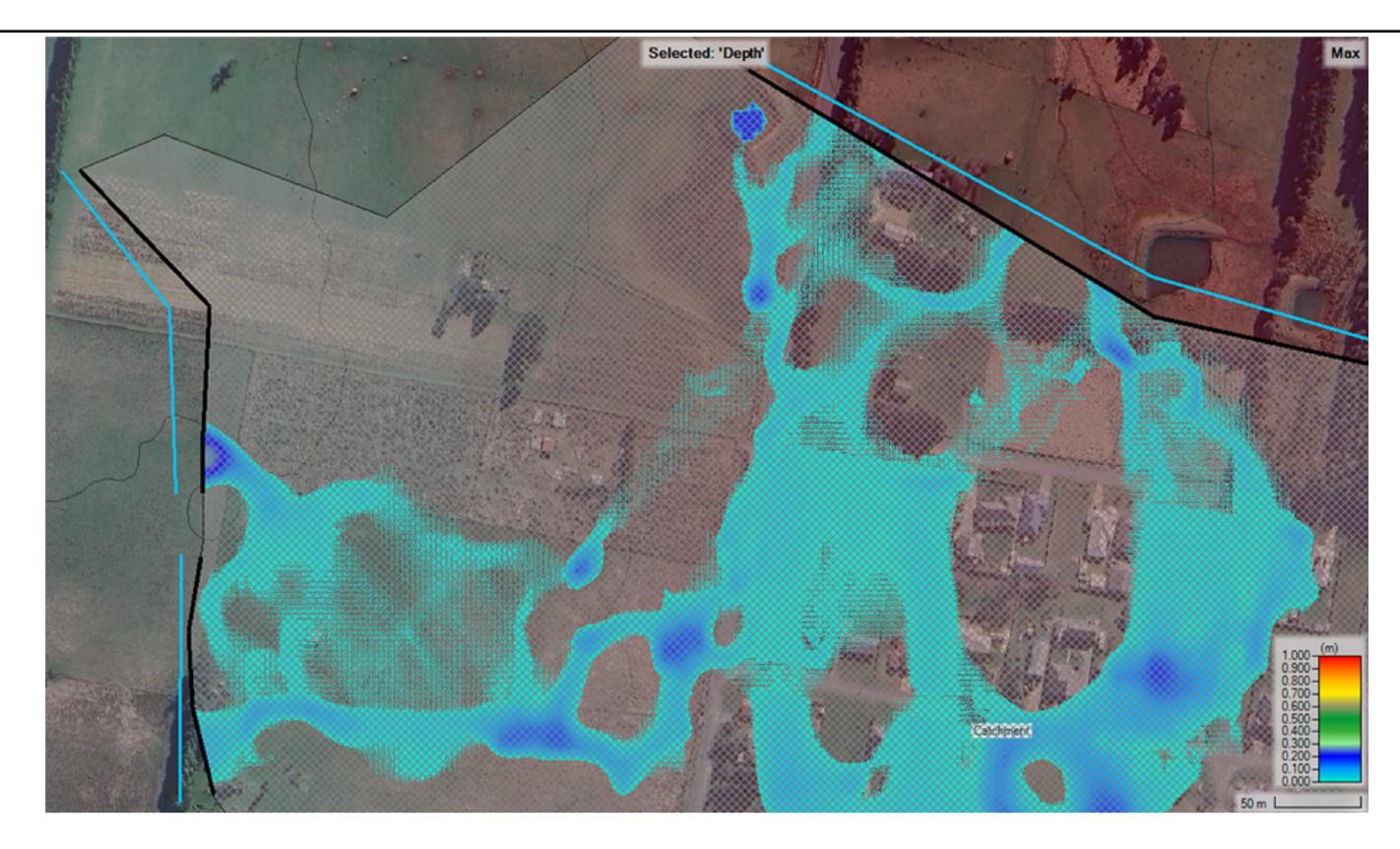


SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LIMITED ALL RIGHTS RESERVED.
SIZE: A1	DESIGN	JE	PO	PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS PRODUCED BY CIVPLAN PTY LTD SOLELY FOR THE
DATE OF SURVEY: 21 MAR 2023	DRAWN	JE	]			AND USE BY THE CLIENT IN ACCORDANCE WITH THE TERMS OF THE CIVPLAN PTY LTD DOES NOT AND SHALL NOT ASSUME ANY RESPON
DATUM: MGA2020, AHD	CHECKED	RB				LIABILITY WHATSOEVER TO ANY THIRD PARTY ARISING OUT OF A
5/(10)Wi. WiGA2020, /(10)	APPROVED	JW				RELIANCE BY THIRD PARTY ON THE CONTENT OF THIS DOCUMENT.

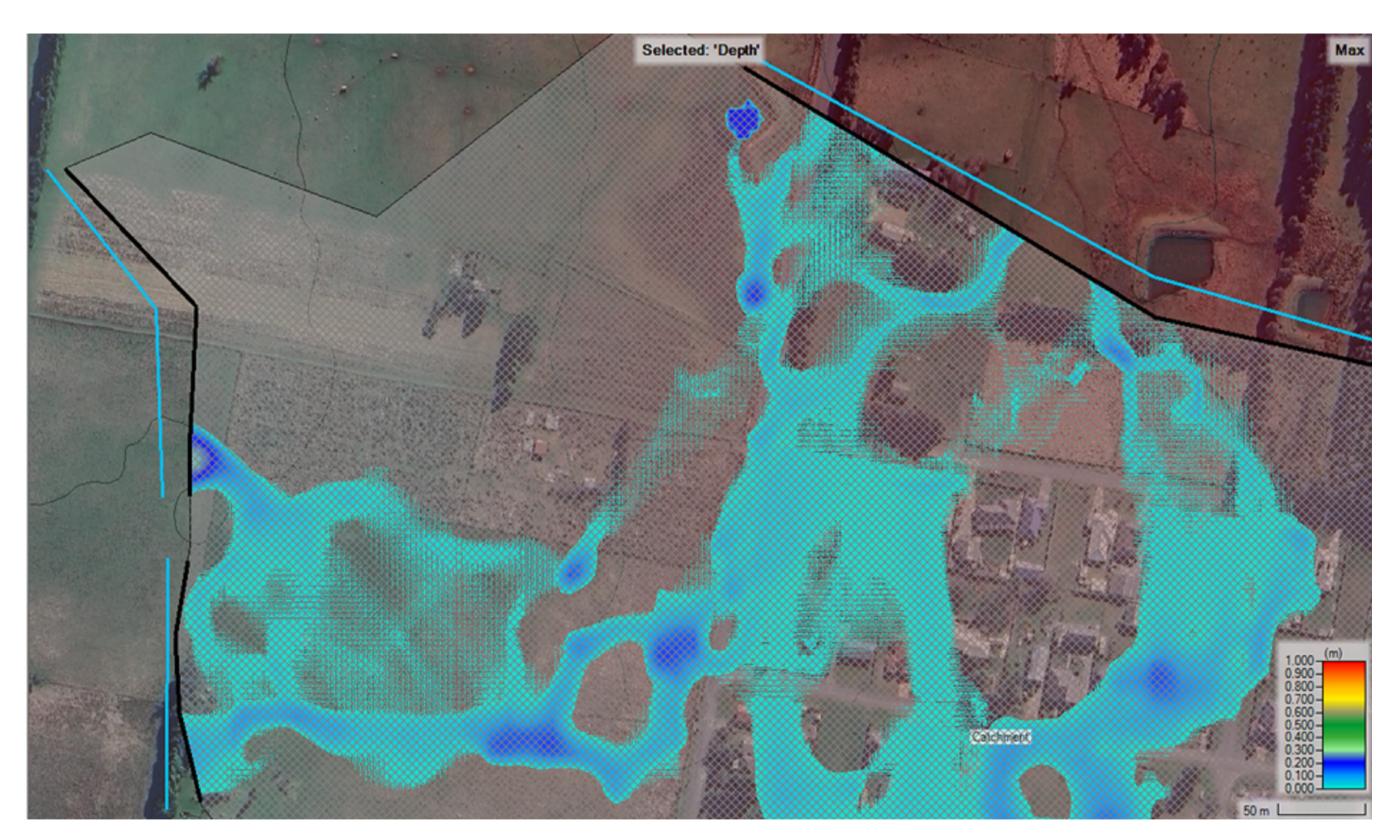


## DRAINS (RAFTS MODELLING) RESULTS 1% AEP NTS





# DRAINS (RAFTS MODELLING) RESULTS PMF




ED ALL RIGHTS RESERVED. CED BY CIVPLAN PTY LTD SOLELY FOR THE BENEFIT OF ACCORDANCE WITH THE TERMS OF THE RETAINER. T AND SHALL NOT ASSUME ANY RESPONSIBILITY OR O ANY THIRD PARTY ARISING OUT OF ANY USE OF

W - LOT 1 D.P. 1064795	PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURPO RELEASE DATE: 6 FEBRUARY 2024				
NCIL					
	JOB-DRAWING NUMBER	REV			
-	23017-412	PO			
	20017-412	10			





PRE DEVELOPMENT - 10% AEP - DEPTH NTS



PRE DEVELOPMENT - 1% AEP - DEPTH NTS

SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LIMITED
SIZE: A1	DESIGN	JE	P0	PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS PRODUCED
DATE OF SURVEY: 21 MAR 2023	DRAWN	JE	1			AND USE BY THE CLIENT IN AC CIVPLAN PTY LTD DOES NOT A
DATE OF SORVET. 21 MAR 2025 DATUM: MGA2020, AHD	CHECKED	RB				LIABILITY WHATSOEVER TO A
	APPROVED	JW				RELIANCE BY THIRD PARTY ON

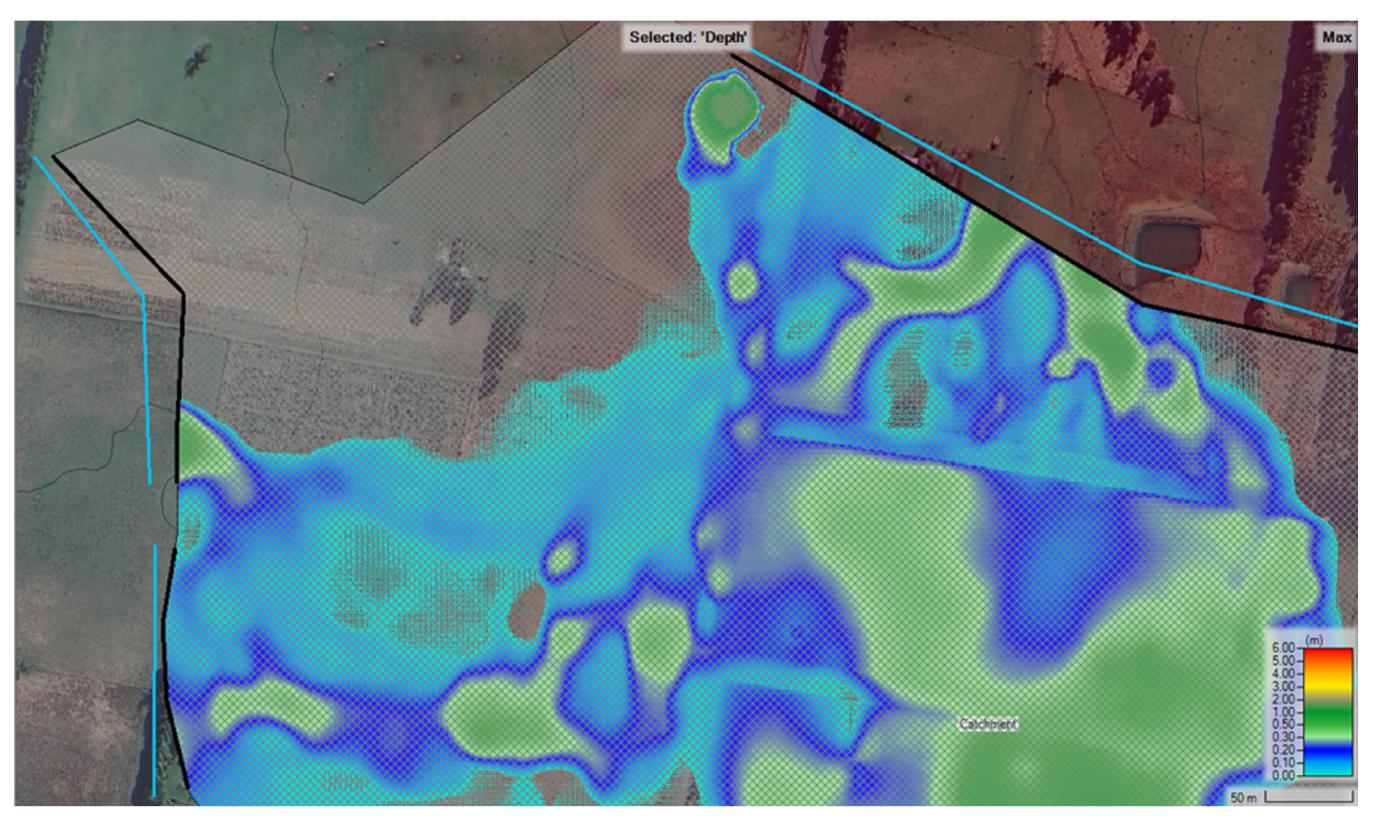


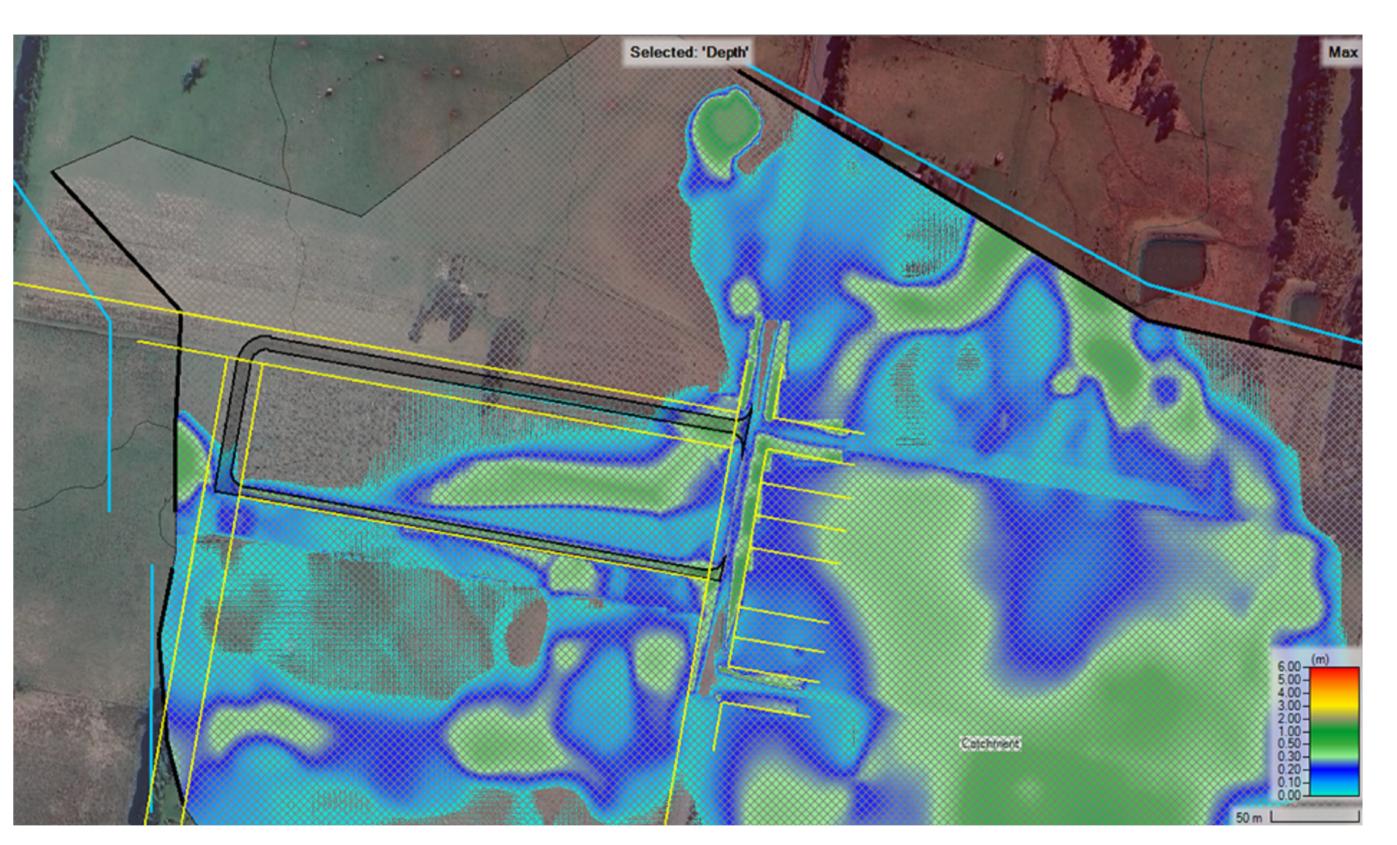
POST DEVELOPMENT - 10% AEP - DEPTH NTS



# POST DEVELOPMENT - 1% AEP - DEPTH

NTS


ED ALL RIGHTS RESERVED.


ICED BY CIVPLAN PTY LTD SOLELY FOR THE BENEFIT OF ACCORDANCE WITH THE TERMS OF THE RETAINER. T AND SHALL NOT ASSUME ANY RESPONSIBILITY OR O ANY THIRD PARTY ARISING OUT OF ANY USE OF ON THE CONTENT OF THIS DOCUMENT.



JOB NAME: 21 LOT RESIDENTIAL SUBDIVISION LOCATION: 39 REDGROUND, CROOKWELL, NSW LGA: UPPER LACHLAN SHIRE COUNC CLIENT: BLUE WATER LAND PTY LTD DESCRIPTION: PLANNING PROPOSAL DRAWING: PRE DEVELOPMENT & POST DEVELO

W - LOT 1 D.P. 1064795	PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURF	POSES
ICIL	RELEASE DATE: 6 FEBRUARY 2024	
	JOB-DRAWING NUMBER	REV
OPMENT 1% & 10% AEP RESULTS - DEPTHS	23017-413	PO

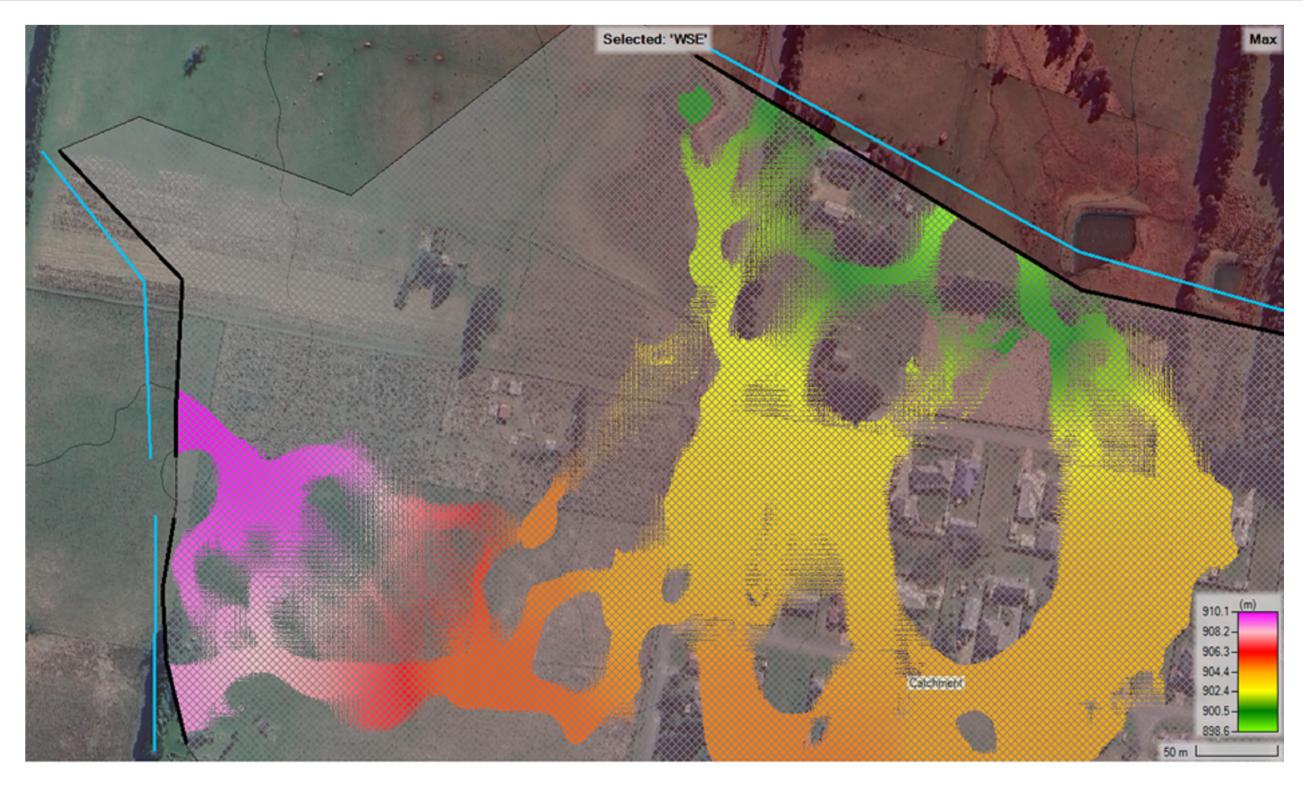




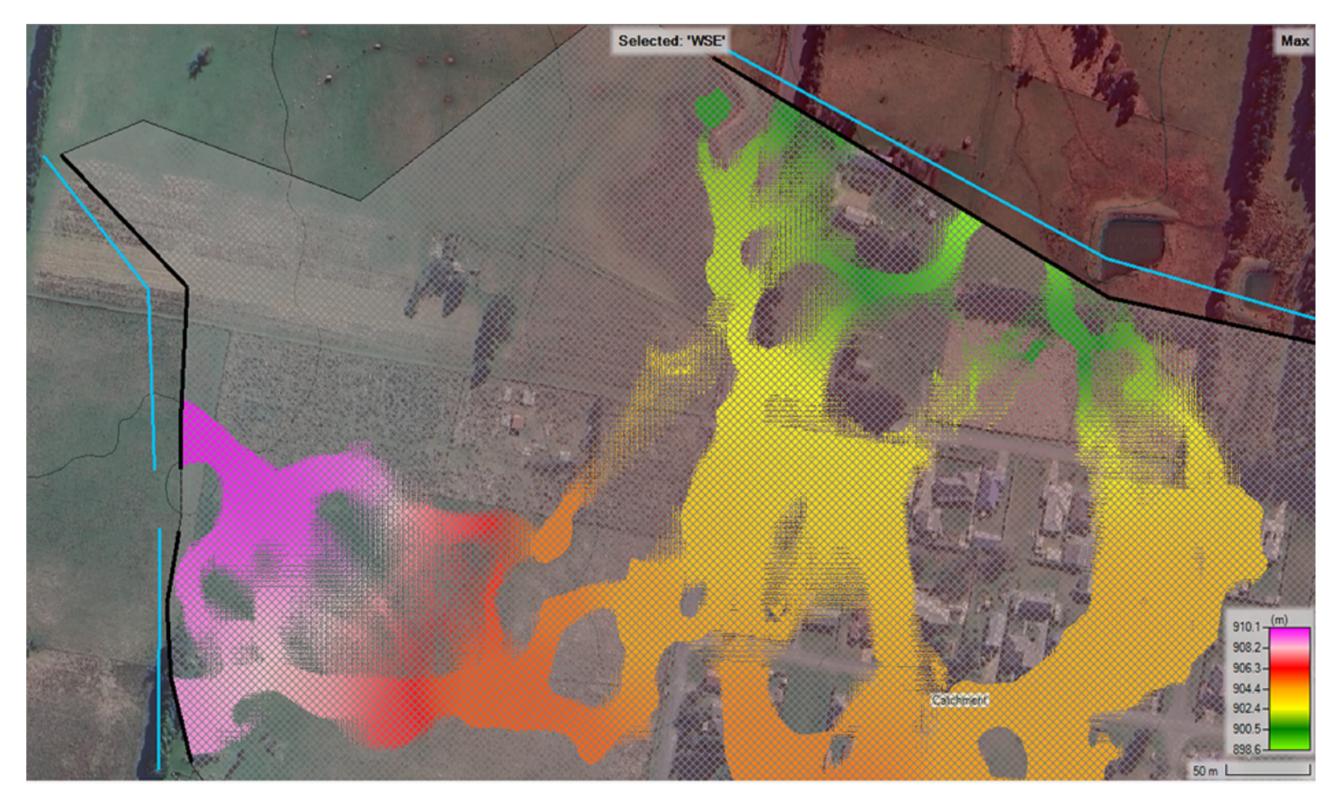
SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LIMITED
SIZE: A1 DATE OF SURVEY: 21 MAR 2023 DATUM: MGA2020, AHD	DESIGN JE DRAWN JE CHECKED RB	JE		PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS PRODUCED AND USE BY THE CLIENT IN AC CIVPLAN PTY LTD DOES NOT A LIABILITY WHATSOEVER TO AI
		JE				
		RB				
	APPROVED	JW				RELIANCE BY THIRD PARTY ON

PRE DEVELOPMENT - PMF - DEPTH

POST DEVELOPMENT - PMF - DEPTH


ED ALL RIGHTS RESERVED. ICED BY CIVPLAN PTY LTD SOLELY FOR THE BENEFIT OF N ACCORDANCE WITH THE TERMS OF THE RETAINER. DT AND SHALL NOT ASSUME ANY RESPONSIBILITY OR

OT AND SHALL NOT ASSUME ANY RESPONSIBILITY OR O ANY THIRD PARTY ARISING OUT OF ANY USE OF ON THE CONTENT OF THIS DOCUMENT.

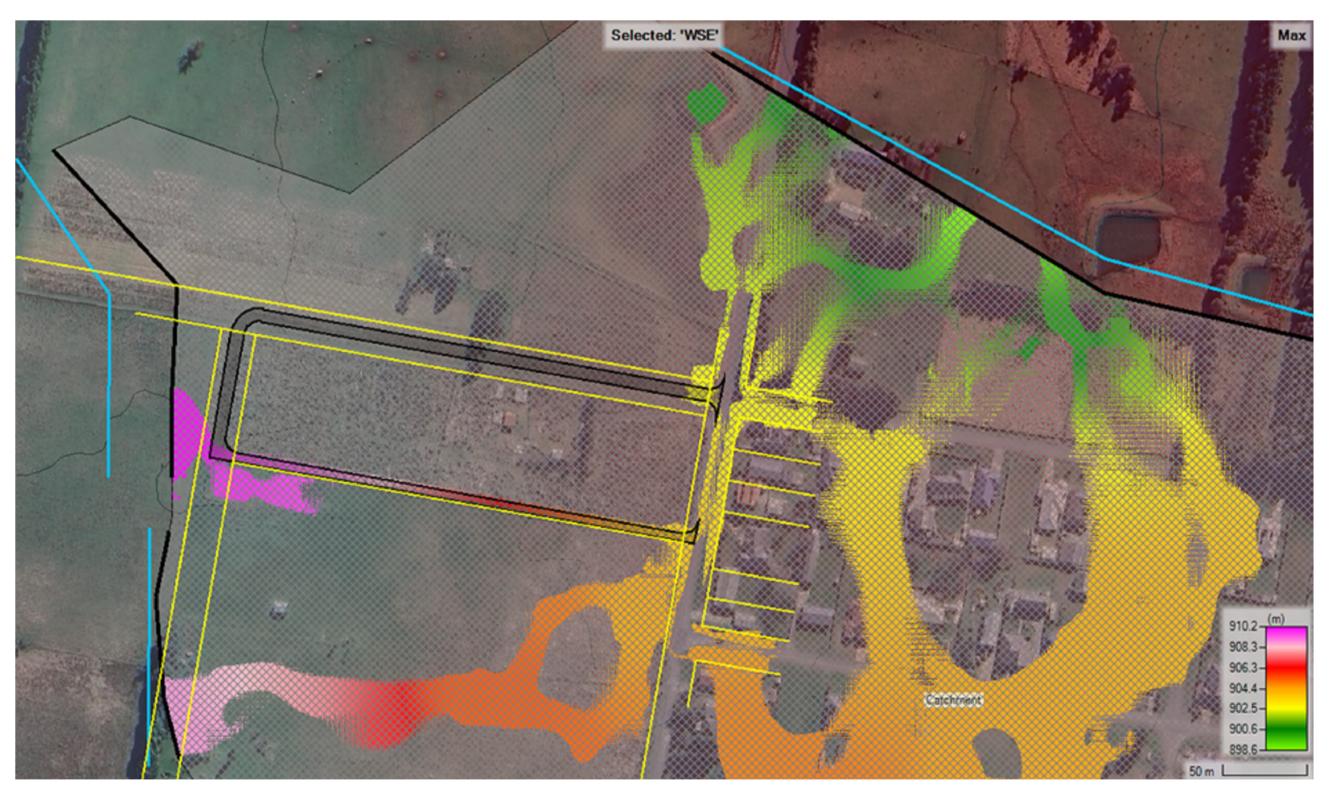



JOB NAME: 21 LOT RESIDENTIAL SUBDIVISION LOCATION: 39 REDGROUND, CROOKWELL, NSW -LGA: UPPER LACHLAN SHIRE COUNCIL CLIENT: BLUE WATER LAND PTY LTD DESCRIPTION: PLANNING PROPOSAL DRAWING: PRE DEVELOPMENT & POST DEVELOP

W - LOT 1 D.P. 1064795	PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURPOSES			
ICIL	RELEASE DATE: 6 FEBRUARY 2024			
	JOB-DRAWING NUMBER	REV		
OPMENT PMF RESULTS - DEPTHS	23017-414	PO		



PRE DEVELOPMENT - 10% AEP - WSE




PRE DEVELOPMENT - 1% AEP - WSE NTS

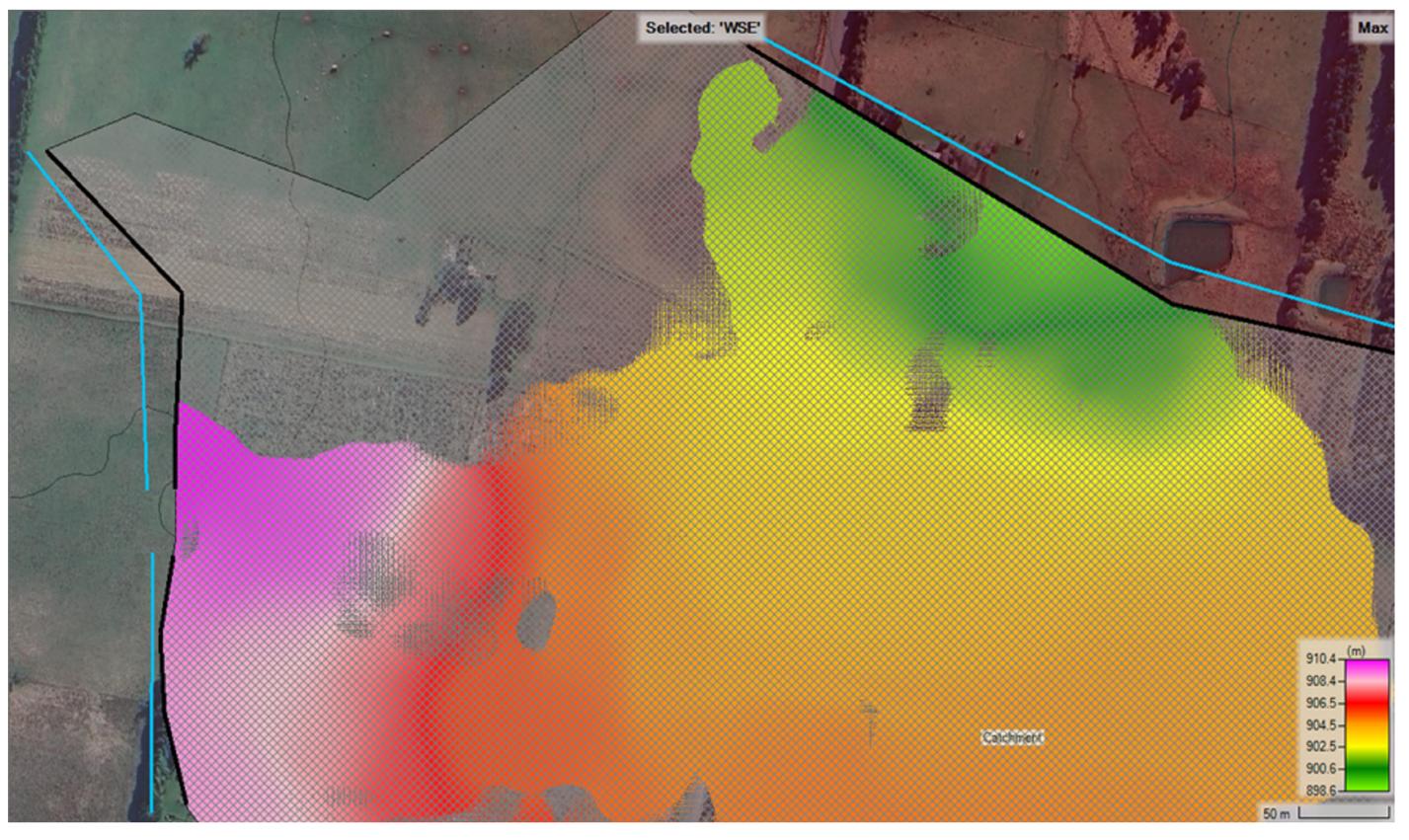
SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LIMITED
SIZE: A1	DESIGN	JE	PO	PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS PRODUCED
DATE OF SURVEY: 21 MAR 2023	DRAWN	JE	1			AND USE BY THE CLIENT IN AC CIVPLAN PTY LTD DOES NOT A
DATE OF SURVEY: 21 MAR 2023 DATUM: MGA2020, AHD	CHECKED	RB	1			LIABILITY WHATSOEVER TO AN
	APPROVED	JW				RELIANCE BY THIRD PARTY ON T

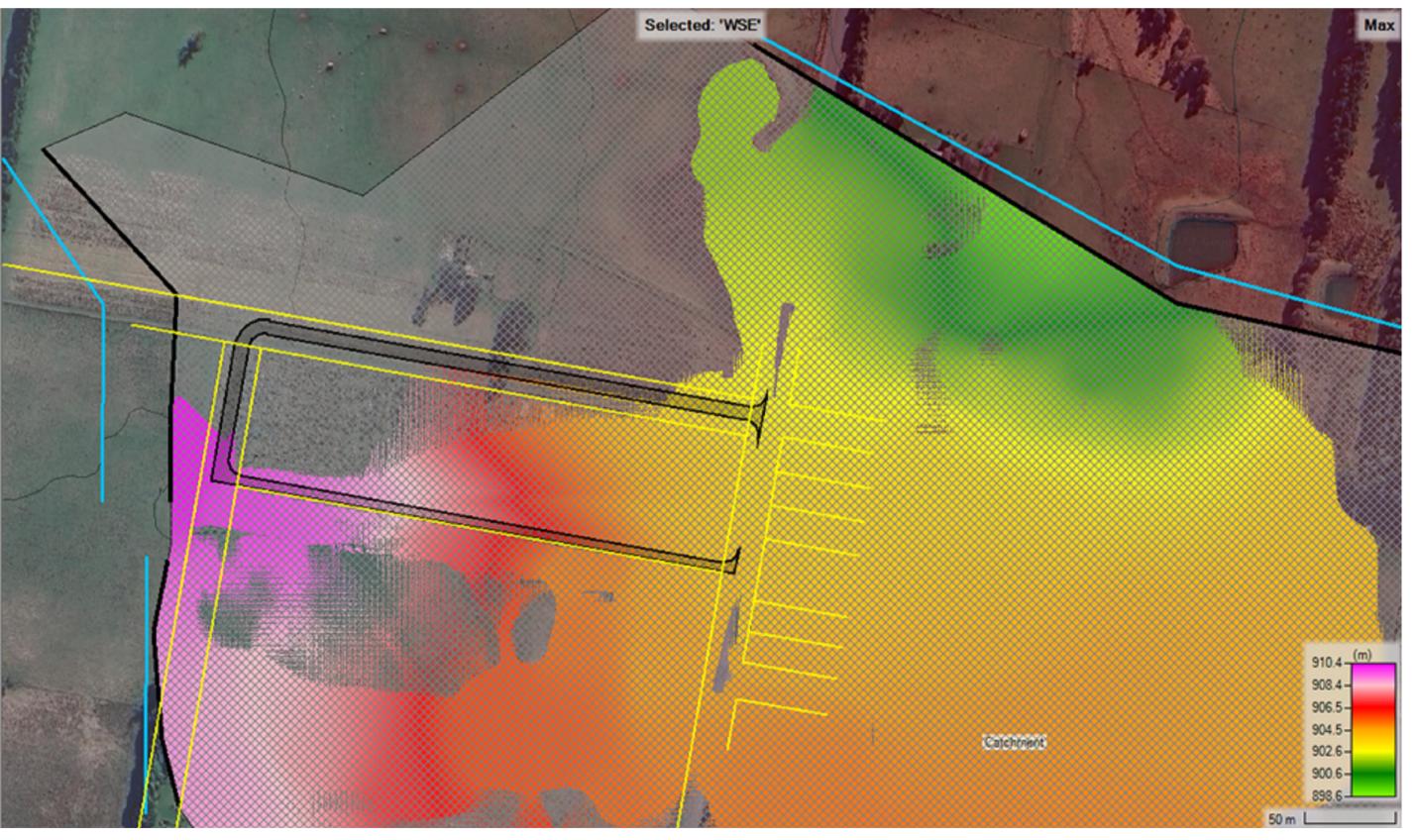


POST DEVELOPMENT - 10% AEP - WSE NTS



# POST DEVELOPMENT - 1% AEP - WSE


ED ALL RIGHTS RESERVED.


ICED BY CIVPLAN PTY LTD SOLELY FOR THE BENEFIT OF ACCORDANCE WITH THE TERMS OF THE RETAINER. T AND SHALL NOT ASSUME ANY RESPONSIBILITY OR O ANY THIRD PARTY ARISING OUT OF ANY USE OF N THE CONTENT OF THIS DOCUMENT.



JOB NAME: 21 LOT RESIDENTIAL SUBDIVISION LOCATION: 39 REDGROUND, CROOKWELL, NSW LGA: UPPER LACHLAN SHIRE COUNCI CLIENT: BLUE WATER LAND PTY LTD DESCRIPTION: PLANNING PROPOSAL DRAWING: PRE DEVELOPMENT & POST DEVELO

W - LOT 1 D.P. 1064795	PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURPOSES			
ICIL	RELEASE DATE: 6 FEBRUARY 2024			
	JOB-DRAWING NUMBER	REV		
OPMENT 1% & 10% AEP RESULTS - WSE	23017-415	PO		

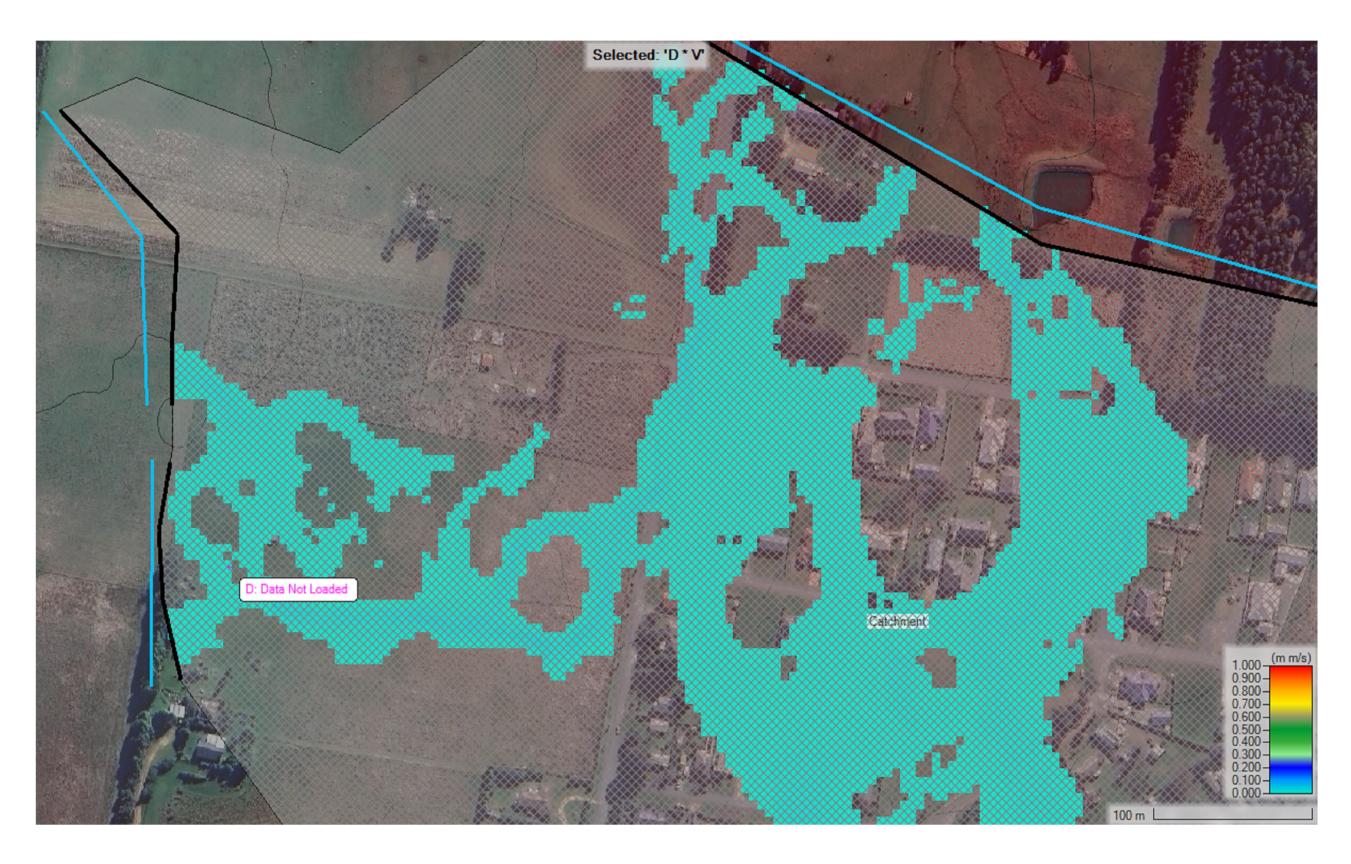




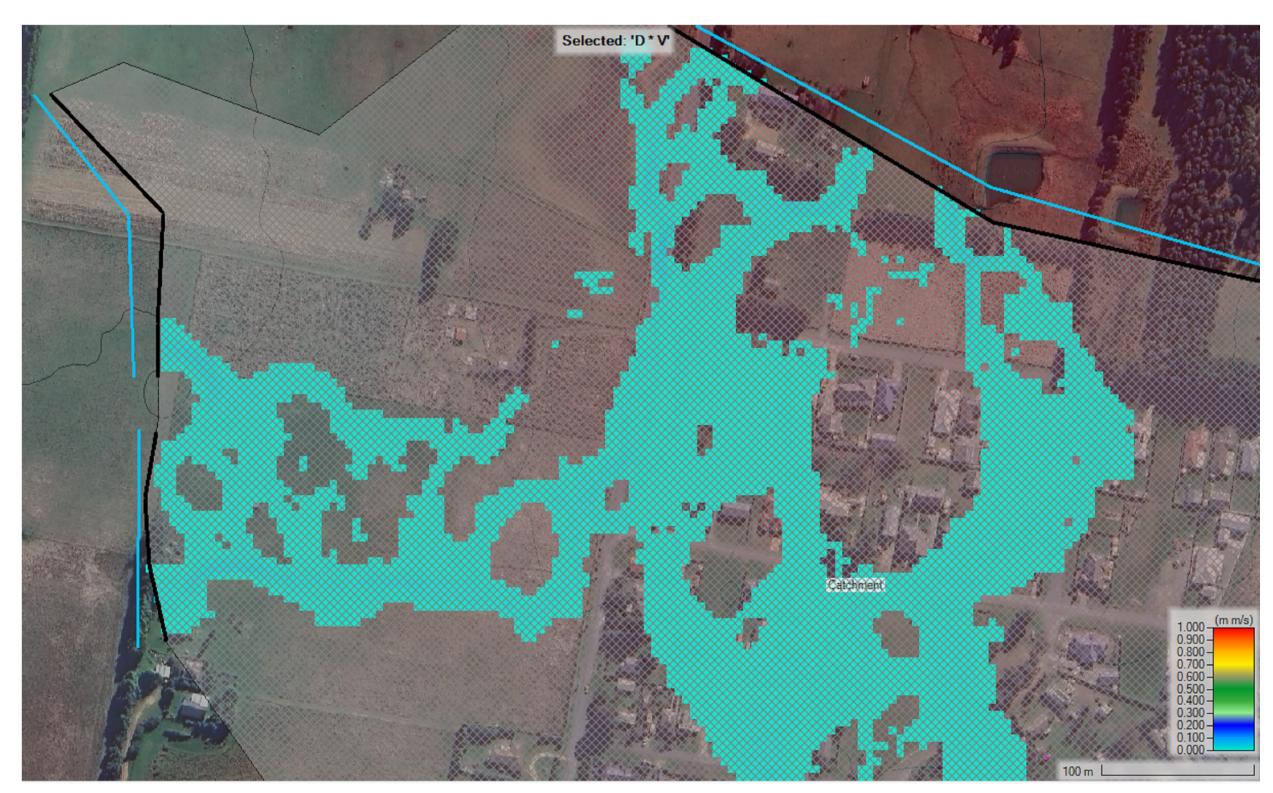
SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LIMITED
SIZE: A1 DATE OF SURVEY: 21 MAR 2023 DATUM: MGA2020, AHD	DESIGN	JE	P0	PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS PRODUCED
	DRAWN	JE				AND USE BY THE CLIENT IN A CIVPLAN PTY LTD DOES NOT A
	CHECKED	RB				LIABILITY WHATSOEVER TO A
	APPROVED	JW				RELIANCE BY THIRD PARTY ON

PRE DEVELOPMENT - PMF - WSE

# POST DEVELOPMENT - PMF - WSE

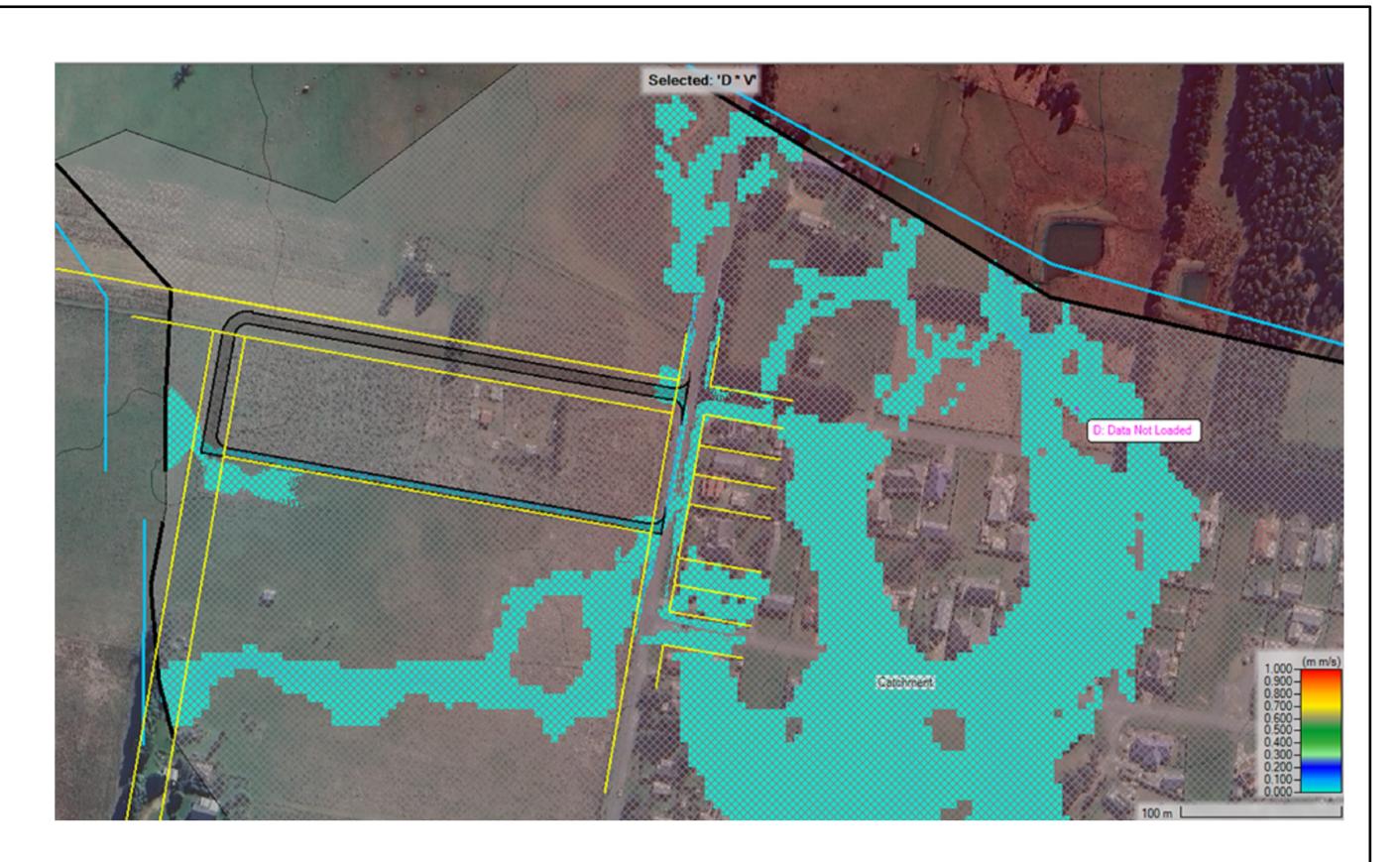

ED ALL RIGHTS RESERVED.

ICED BY CIVPLAN PTY LTD SOLELY FOR THE BENEFIT OF N ACCORDANCE WITH THE TERMS OF THE RETAINER. DT AND SHALL NOT ASSUME ANY RESPONSIBILITY OR O ANY THIRD PARTY ARISING OUT OF ANY USE OF ON THE CONTENT OF THIS DOCUMENT.

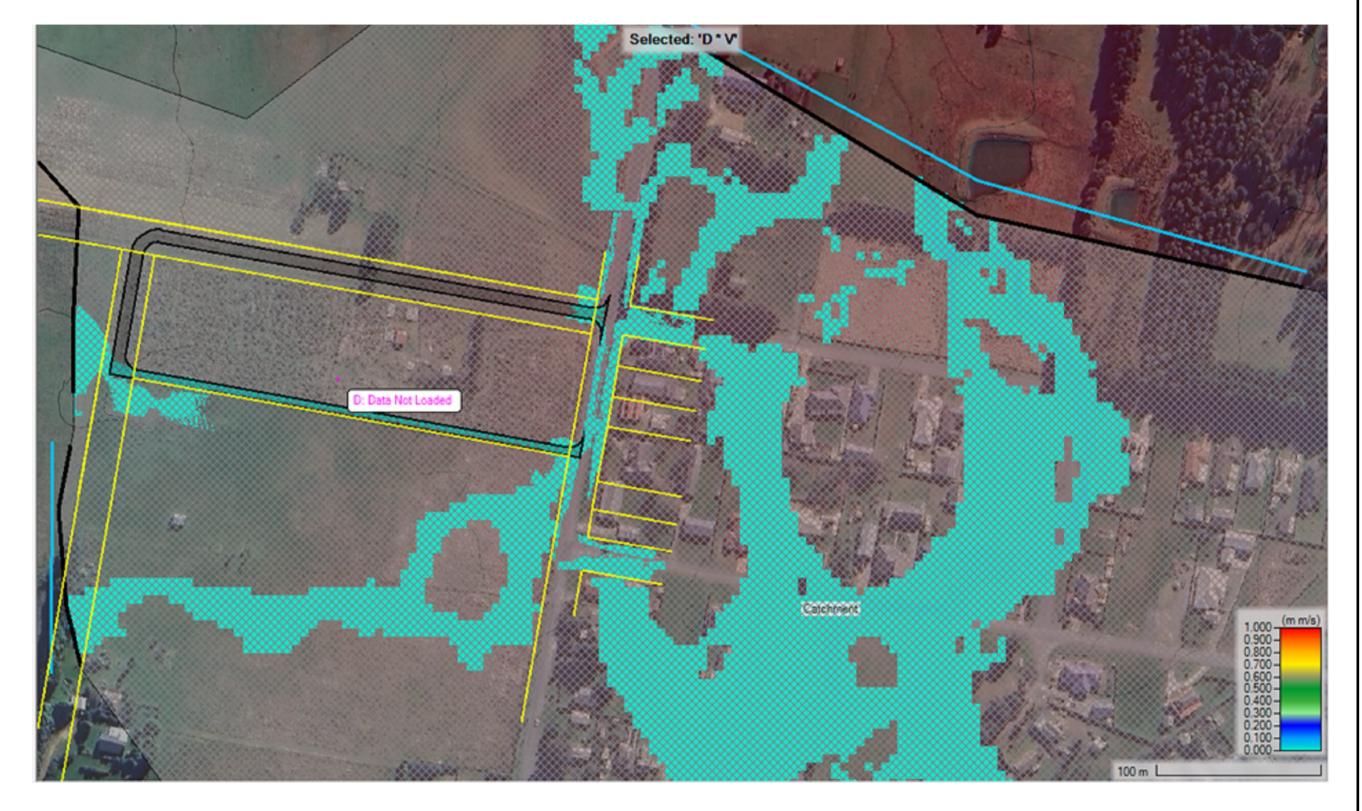



JOB NAME:21 LOT RESIDENTIAL SUBDIVISIONLOCATION:39 REDGROUND, CROOKWELL, NSWLGA:UPPER LACHLAN SHIRE COUNCICLIENT:BLUE WATER LAND PTY LTDDESCRIPTION:PLANNING PROPOSALDRAWING:PRE DEVELOPMENT & POST DEVELOP

W - LOT 1 D.P. 1064795	PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURPOSES				
ICIL	RELEASE DATE: 6 FEBRUARY 2024				
	JOB-DRAWING NUMBER	REV			
OPMENT PMF RESULTS - WSE	23017-416	PO			




# PRE DEVELOPMENT - 10% AEP - VxD




## PRE DEVELOPMENT - 1% AEP - VxD NTS

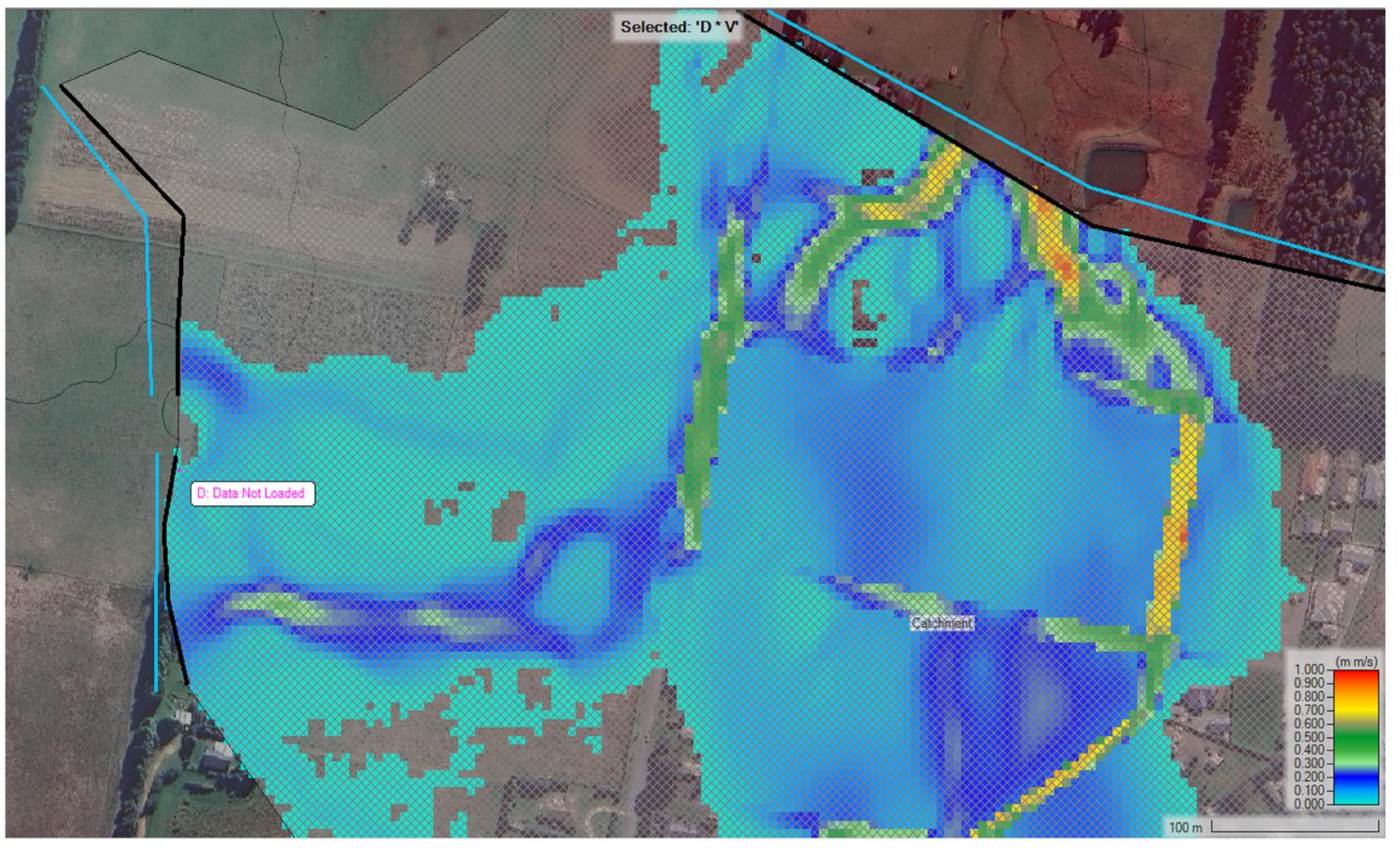
SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LIMITED
SIZE: A1	DESIGN	JE	P0	PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS PRODUCED
DATE OF SURVEY: 21 MAR 2023	DRAWN	JE				AND USE BY THE CLIENT IN AC CIVPLAN PTY LTD DOES NOT A
DATUM: MGA2020, AHD	CHECKED	RB				LIABILITY WHATSOEVER TO A
	APPROVED	JW				RELIANCE BY THIRD PARTY ON

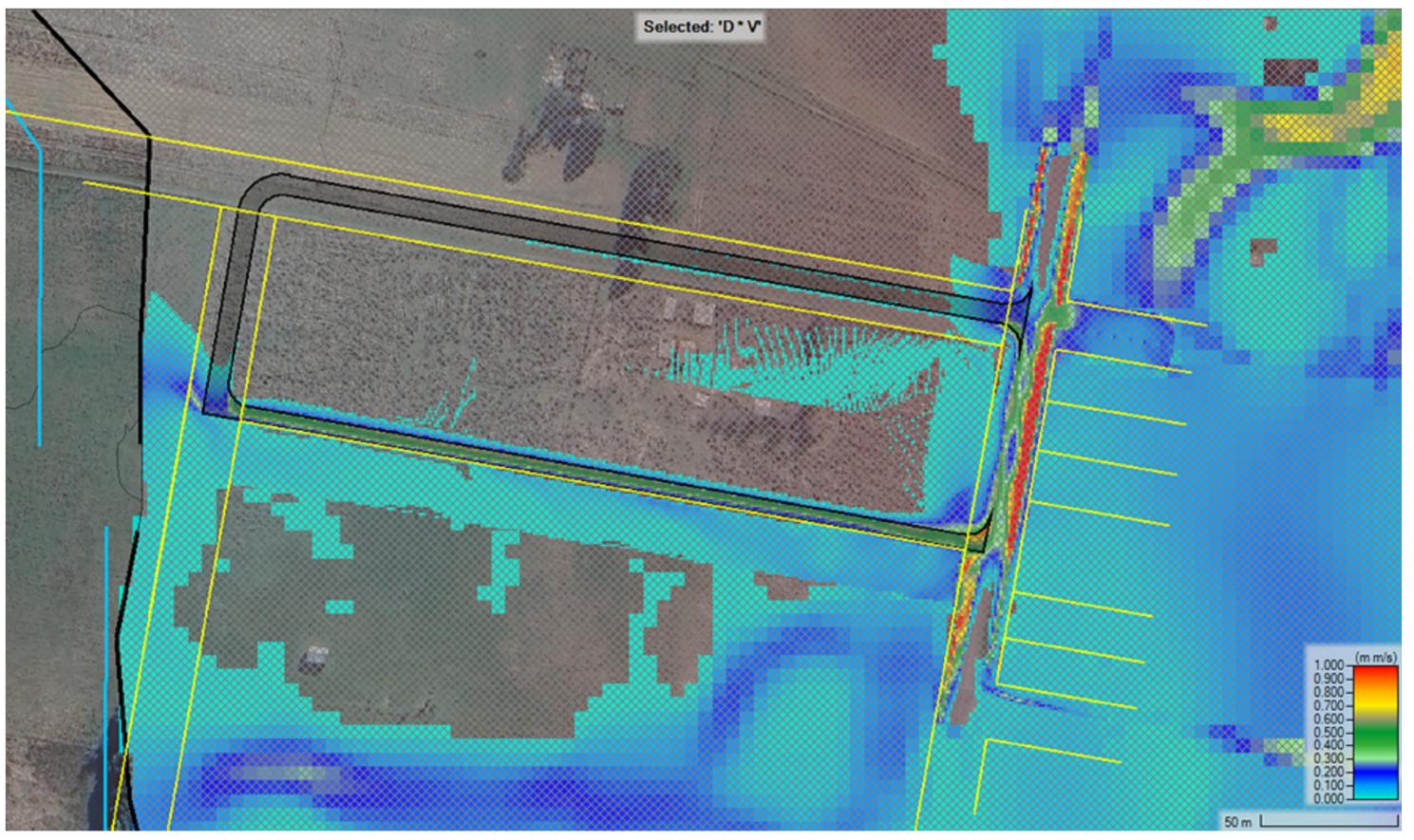


POST DEVELOPMENT - 10% AEP - VxD NTS



# POST DEVELOPMENT - 1% AEP - VxD


ED ALL RIGHTS RESERVED. ICED BY CIVPLAN PTY LTD SOLELY FOR THE BENEFIT OF


N ACCORDANCE WITH THE TERMS OF THE RETAINER. T AND SHALL NOT ASSUME ANY RESPONSIBILITY OR O ANY THIRD PARTY ARISING OUT OF ANY USE OF ON THE CONTENT OF THIS DOCUMENT.



LOCATION: 39 REDGROUND, CROOKWELL, NSW LGA: UPPER LACHLAN SHIRE COUNCI CLIENT: BLUE WATER LAND PTY LTD DESCRIPTION: PLANNING PROPOSAL DRAWING: PRE DEVELOPMENT & POST DEVELO

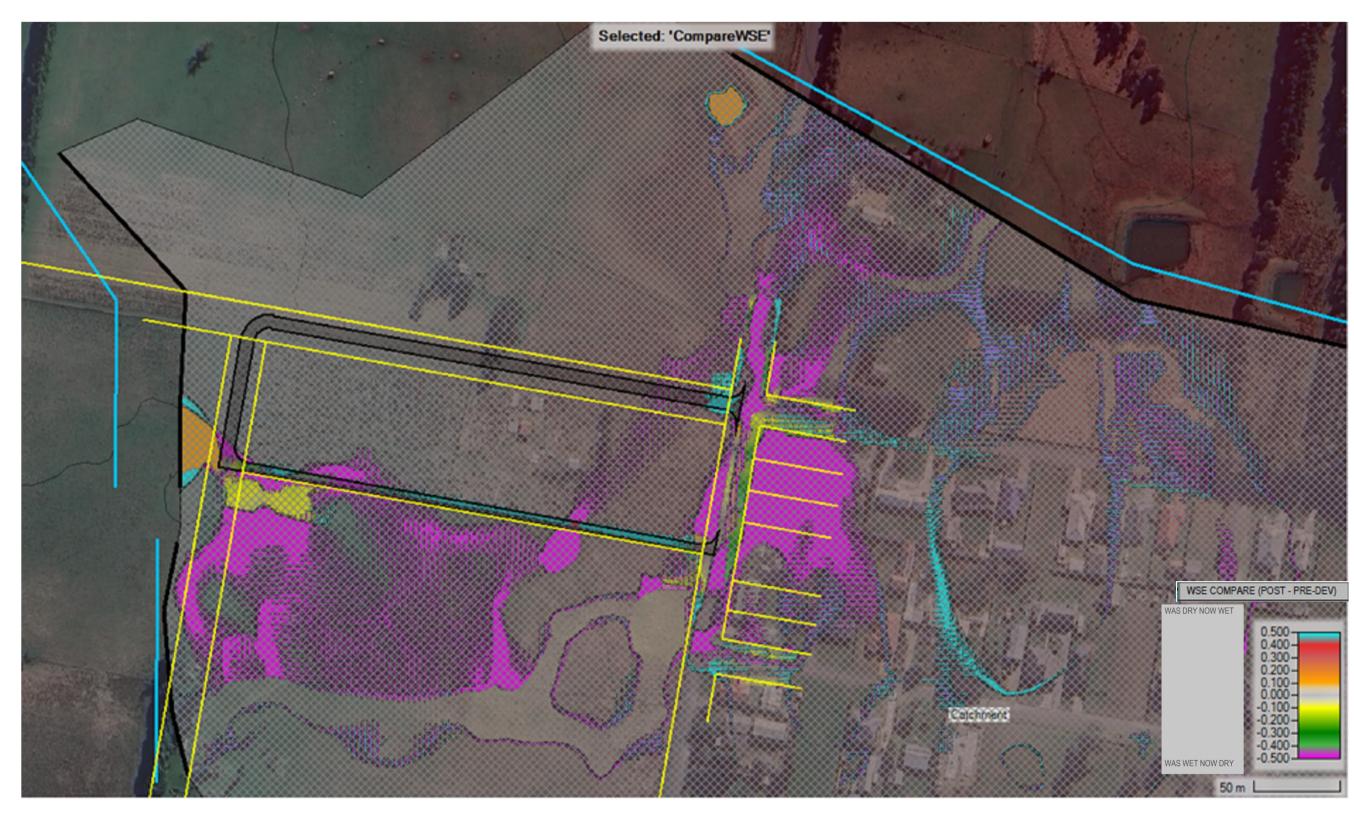
W - LOT 1 D.P. 1064795	PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURPOSES				
ICIL	RELEASE DATE: 6 FEBRUARY 2024				
	JOB-DRAWING NUMBER	REV			
OPMENT 1% & 10% AEP RESULTS - VxD	23017-417	PO			



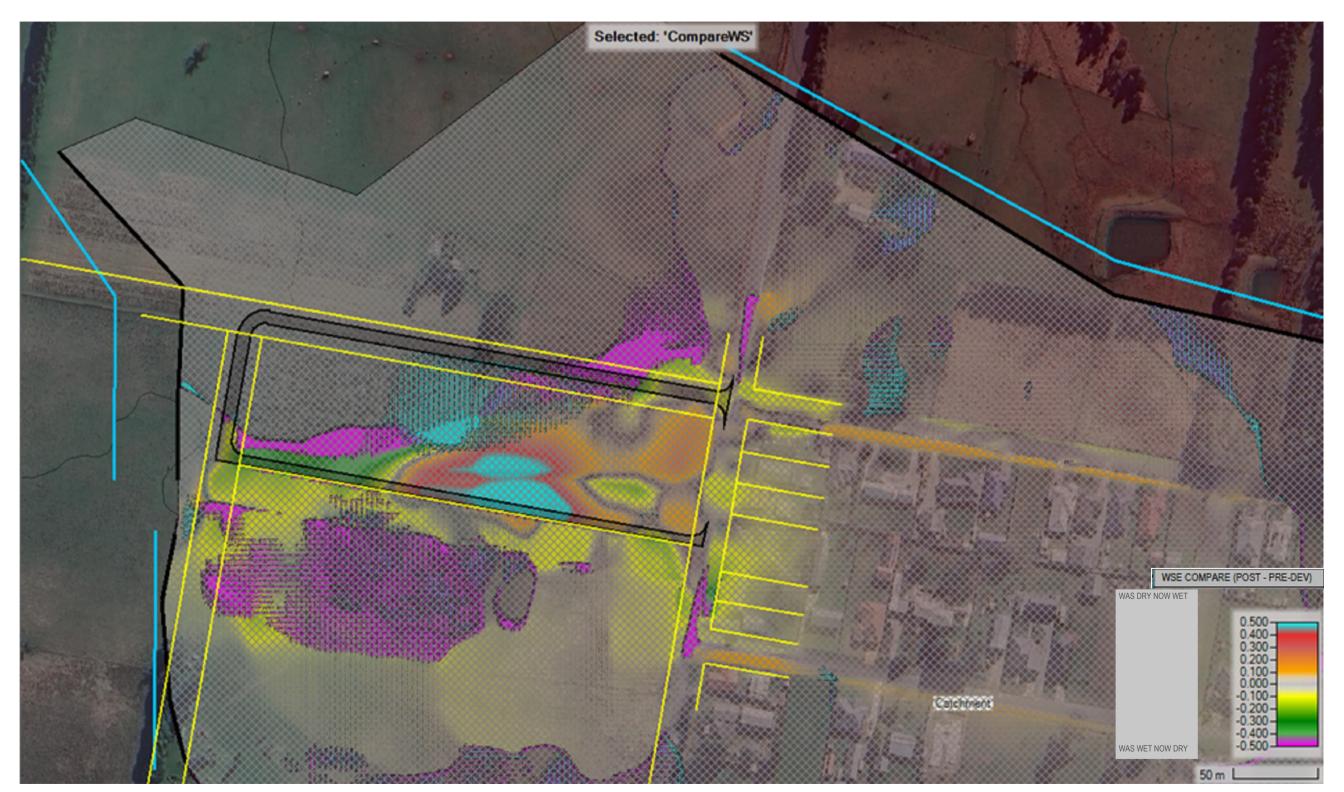


SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LIMITED
SIZE: A1	DESIGN	JE	P0	PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS PRODUCED
DATE OF SURVEY: 21 MAR 2023	DRAWN	JE				AND USE BY THE CLIENT IN A CIVPLAN PTY LTD DOES NOT A
DATUM: MGA2020, AHD	CHECKED	RB				LIABILITY WHATSOEVER TO A
	APPROVED	JW				RELIANCE BY THIRD PARTY ON

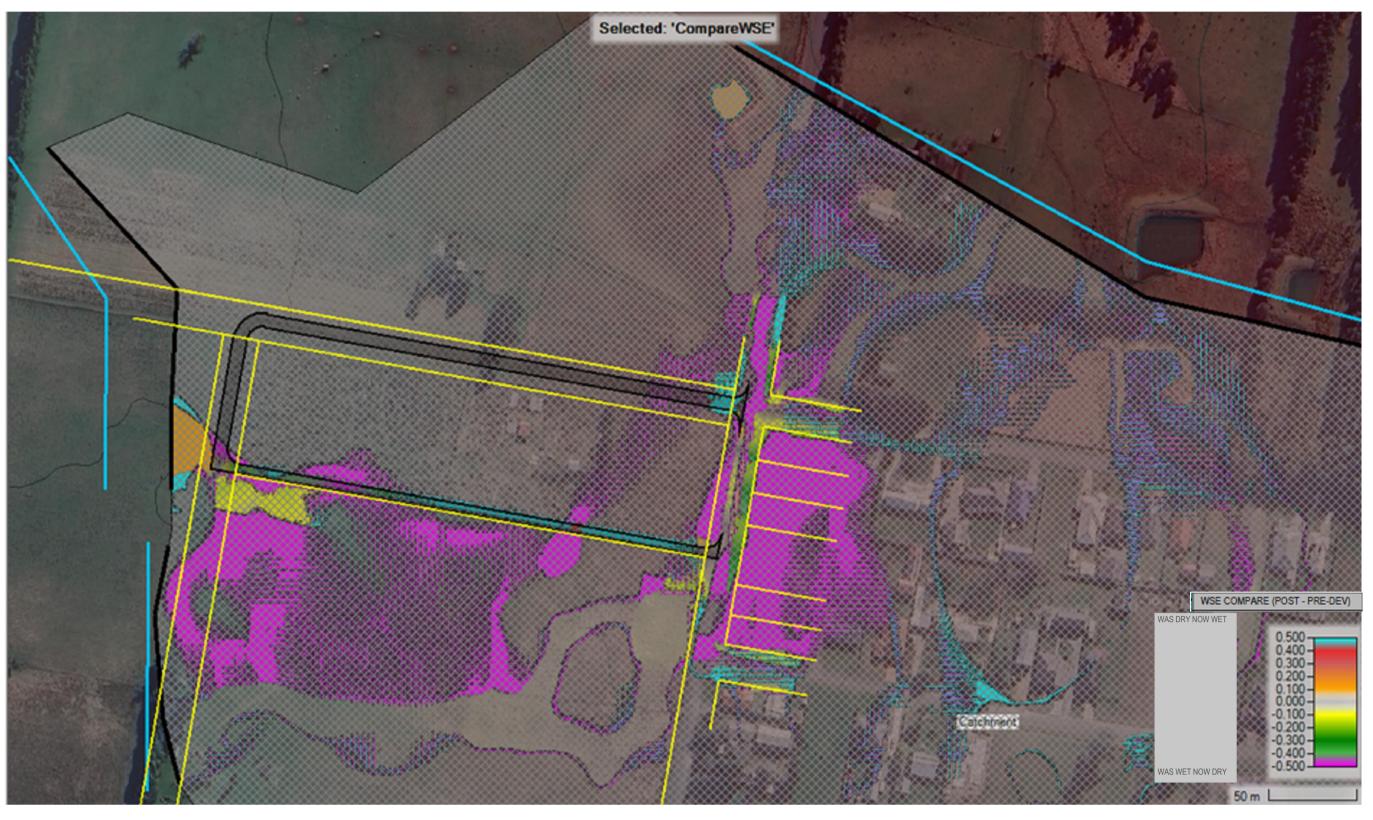
PRE DEVELOPMENT - PMF - VxD


# POST DEVELOPMENT - PMF - VxD

## TED ALL RIGHTS RESERVED.


JCED BY CIVPLAN PTY LTD SOLELY FOR THE BENEFIT OF IN ACCORDANCE WITH THE TERMS OF THE RETAINER. OT AND SHALL NOT ASSUME ANY RESPONSIBILITY OR TO ANY THIRD PARTY ARISING OUT OF ANY USE OF TO NTHE CONTENT OF THIS DOCUMENT.




JOB NAME: 21 LOT RESIDENTIAL SUBDIVISION LOCATION: 39 REDGROUND, CROOKWELL, NSW - LOT 1 D.P. 1064795	PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURPOSES				
LGA: UPPER LACHLAN SHIRE COUNCIL	RELEASE DATE: 6 FEBRUARY 2024				
CLIENT: BLUE WATER LAND PTY LTD	JOB-DRAWING NUMBER R	REV			
DESCRIPTION: PLANNING PROPOSAL	00047 440				
DRAWING: PRE DEVELOPMENT & POST DEVELOPMENT PMF RESULTS - VxD	23017-418	PO			



PRE DEVELOPMENT x POST DEVELOPMENT - 10% AEP - WAS DRY NOW WET NTS



SCALE: AS NOTED	SURVEY	AS	REV	DESCRIPTION	DATE	CIVPLAN PTY LIMITED
SIZE: A1	DESIGN	JE	P0	PRELIMINARY PLANNING PROPOSAL DESIGN	6 FEB 24	THIS DOCUMENT IS PRODUCED
DATE OF SURVEY: 21 MAR 2023	DRAWN	JE				AND USE BY THE CLIENT IN A CIVPLAN PTY LTD DOES NOT A
DATUM: MGA2020, AHD	CHECKED	RB				LIABILITY WHATSOEVER TO A
	APPROVED	JW				RELIANCE BY THIRD PARTY ON



PRE DEVELOPMENT x POST DEVELOPMENT - 1% AEP - WAS DRY NOW WET NTS

## PRE DEVELOPMENT x POST DEVELOPMENT - PMF - WAS DRY NOW WET NTS

## TED ALL RIGHTS RESERVED.

JCED BY CIVPLAN PTY LTD SOLELY FOR THE BENEFIT OF ACCORDANCE WITH THE TERMS OF THE RETAINER. OT AND SHALL NOT ASSUME ANY RESPONSIBILITY OR O ANY THIRD PARTY ARISING OUT OF ANY USE OF ON THE CONTENT OF THIS DOCUMENT.



JOB NAME: 21 LOT RESIDENTIAL SUBDIVISION LOCATION: 39 REDGROUND, CROOKWELL, NSW - LOT 1 D.P. 1064795	PRELIMINARY NOT TO BE USED FOR CONSTRUCTION PURF	POSES			
LGA: UPPER LACHLAN SHIRE COUNCIL	RELEASE DATE: 6 FEBRUARY 2024				
CLIENT: BLUE WATER LAND PTY LTD	JOB-DRAWING NUMBER	REV			
DESCRIPTION: PLANNING PROPOSAL	22017 410				
DRAWING: PRE & POST DEVELOPMENT 10%, 1% AEP & PMF - WAS DRY NOW WET	23017-419	P0			

## Appendix B

ARR Hub Data

# Australian Rainfall & Runoff Data Hub - Results

## Input Data

Longitude	149.47
Latitude	-34.458
Selected Regions (clear)	
River Region	show
ARF Parameters	show
Storm Losses	show
Temporal Patterns	show
Areal Temporal Patterns	show
BOM IFDs	show
Median Preburst Depths and Ratios	show
10% Preburst Depths	show
25% Preburst Depths	show
75% Preburst Depths	show
90% Preburst Depths	show
Interim Climate Change Factors	show
Probability Neutral Burst Initial Loss (./nsw_specific)	show



A20

TERRITORY

A1

Leaflet (http://leafletjs.com) | Map data © OpenStreetMap (https://www.openstreetmap.org/) contributors, CC-BY-SA (https://creativecommons.org/licenses/by-sa/2.0/) Imagery © Mapbox (https://www.mapbox.com/)

Weston Creek

## Data

### **River Region**

Division	Murray-Darling Basin	
River Number	13	
River Name	Lachlan River	
Layer Info		
Time Accessed	16 January 2024 10:22AM	
Version	2016_v1	

### **ARF** Parameters

$$egin{aligned} ARF &= Min \left\{ 1, \left[ 1-a \left( Area^b - c ext{log}_{10} Duration 
ight) Duration^{-d} 
ight. \ &+ eArea^f Duration^g \left( 0.3 + ext{log}_{10} AEP 
ight) 
ight. \ &+ h10^{iArearac{Duration}{1440}} \left( 0.3 + ext{log}_{10} AEP 
ight) 
ight] 
ight\} \end{aligned}$$

Zone	а	D	С	a	е	Т	g	n	I	
Central NSW	0.265	0.241	0.505	0.321	0.00056	0.414	-0.021	0.015	-0.00033	

### Short Duration ARF

$$egin{aligned} ARF &= Min \left[ 1, 1-0.287 \left( Area^{0.265} - 0.439 ext{log}_{10}(Duration) 
ight) . Duration^{-0.366} \ &+ 2.26 ext{ x } 10^{-3} ext{ x } Area^{0.226} . Duration^{0.125} \left( 0.3 + ext{log}_{10}(AEP) 
ight) \ &+ 0.0141 ext{ x } Area^{0.213} ext{ x } 10^{-0.021} rac{\left( Duration - 180 
ight)^2}{1440} \left( 0.3 + ext{log}_{10}(AEP) 
ight) 
ight] \end{aligned}$$

### Layer Info

**Time Accessed** 

16 January 2024 10:22AM

Version

2016_v1

16/01/2024, 10:23

### Storm Losses

Note: Burst Loss = Storm Loss - Preburst

Note: These losses are only for rural use and are **NOT FOR DIRECT USE** in urban areas

Note: As this point is in NSW the advice provided on losses and pre-burst on the NSW Specific Tab of the ARR Data Hub (./nsw_specific) is to be considered. In NSW losses are derived considering a hierarchy of approaches depending on the available loss information. The continuing storm loss information from the ARR Datahub provided below should only be used where relevant under the loss hierarchy (level 5) and where used is to be multiplied by the factor of 0.4.

ID		29172.0
Storm Initial Losses (mm)		25.0
Storm Continuing Losses (	mm/h)	4.3
ayer Info		
Time Accessed	16 January 2024 10:22AM	1
Version	2016_v1	
Temporal Patterns   Dov	wnload (.zip) (static/temporal_pat	terns/TP/MB.zip)
code	MB	
Label	Murray Basin	
_ayer Info		
Time Accessed	16 January 2024 10:22AM	1
Version	2016_v2	
Areal Temporal Patterns (./static/temporal_patter	s   Download (.zip) ns/Areal/Areal_MB.zip)	
code	MB	
arealabel	Murray Basin	
Layer Info		
Time Accessed	16 January 2024 10:22AM	1
Version	2016_v2	
BOM IFDs		

year=2016&coordinate_type=dd&latitude=-34.458&longitude=149.47&sdmin=true&sdhr=true&sdday=true&user_label=) to obtain the IFD depths for catchment centroid from the BoM website

### Results | ARR Data Hub

### Time Accessed

### 16 January 2024 10:22AM

## Median Preburst Depths and Ratios

Values are of the format depth (ratio) with depth in mm

min (h)\AEP(%)	50	20	10	5	2	1
60 (1.0)	0.0	0.1	0.1	0.2	0.1	0.0
	(0.002)	(0.004)	(0.005)	(0.006)	(0.002)	(0.000)
90 (1.5)	0.1	0.1	0.1	0.0	0.0	0.0
	(0.007)	(0.004)	(0.002)	(0.001)	(0.000)	(0.000)
120 (2.0)	0.4	0.3	0.2	0.1	0.1	0.2
	(0.018)	(0.009)	(0.005)	(0.002)	(0.003)	(0.004)
180 (3.0)	0.5	0.4	0.4	0.4	0.6	0.7
	(0.019)	(0.014)	(0.011)	(0.009)	(0.012)	(0.014)
360 (6.0)	1.4	1.7	1.8	1.9	1.2	0.7
	(0.044)	(0.039)	(0.037)	(0.035)	(0.019)	(0.010)
720 (12.0)	0.2	1.1	1.8	2.3	6.9	10.3
	(0.004)	(0.020)	(0.026)	(0.031)	(0.077)	(0.103)
1080 (18.0)	0.0	1.4	2.4	3.3	6.5	8.8
	(0.000)	(0.021)	(0.030)	(0.036)	(0.060)	(0.073)
1440 (24.0)	0.0	0.3	0.5	0.7	2.9	4.5
	(0.000)	(0.004)	(0.005)	(0.006)	(0.023)	(0.033)
2160 (36.0)	0.0	0.0	0.0	0.0	0.5	0.9
	(0.000)	(0.000)	(0.000)	(0.000)	(0.004)	(0.006)
2880 (48.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
4320 (72.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)

Time Accessed	16 January 2024 10:22AM
Version	2018_v1
Note	Preburst interpolation methods for catchment wide preburst has been slightly altered. Point values remain unchanged.

Values are of the format depth (ratio) with depth in mm

min (h)\AEP(%)	50	20	10	5	2	1
60 (1.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
90 (1.5)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
120 (2.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
180 (3.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
360 (6.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
720 (12.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
1080 (18.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
1440 (24.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
2160 (36.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
2880 (48.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
4320 (72.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)

Time Accessed	16 January 2024 10:22AM
Version	2018_v1
Note	Preburst interpolation methods for catchment wide preburst has been slightly altered. Point values remain unchanged.

Values are of the format depth (ratio) with depth in mm

min (h)\AEP(%)	50	20	10	5	2	1
60 (1.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
90 (1.5)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
120 (2.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
180 (3.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
360 (6.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
720 (12.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
1080 (18.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
1440 (24.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
2160 (36.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
2880 (48.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
4320 (72.0)	0.0	0.0	0.0	0.0	0.0	0.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)

Time Accessed	16 January 2024 10:22AM
Version	2018_v1
Note	Preburst interpolation methods for catchment wide preburst has been slightly altered. Point values remain unchanged.

Values are of the format depth (ratio) with depth in mm

min (h)\AEP(%)	50	20	10	5	2	1
60 (1.0)	5.9	5.9	6.0	6.0	7.2	8.1
	(0.357)	(0.279)	(0.243)	(0.217)	(0.225)	(0.230)
90 (1.5)	8.9	8.7	8.6	8.5	8.0	7.7
	(0.467)	(0.356)	(0.305)	(0.267)	(0.220)	(0.193)
120 (2.0)	11.1	11.1	11.1	11.1	10.9	10.8
	(0.526)	(0.409)	(0.355)	(0.315)	(0.271)	(0.244)
180 (3.0)	12.4	12.3	12.2	12.1	15.2	17.6
	(0.506)	(0.389)	(0.335)	(0.294)	(0.323)	(0.340)
360 (6.0)	9.5	14.7	18.1	21.4	22.0	22.4
	(0.294)	(0.350)	(0.374)	(0.389)	(0.344)	(0.316)
720 (12.0)	7.4	11.6	14.3	17.0	29.2	38.3
	(0.171)	(0.204)	(0.216)	(0.223)	(0.327)	(0.385)
1080 (18.0)	1.5	7.8	11.9	16.0	24.0	30.0
	(0.029)	(0.115)	(0.150)	(0.174)	(0.222)	(0.248)
1440 (24.0)	0.3	4.0	6.4	8.8	16.3	21.9
	(0.005)	(0.052)	(0.072)	(0.085)	(0.133)	(0.160)
2160 (36.0)	0.1	2.0	3.3	4.5	8.7	11.8
	(0.001)	(0.023)	(0.031)	(0.037)	(0.060)	(0.073)
2880 (48.0)	0.0	1.4	2.3	3.1	6.0	8.1
	(0.000)	(0.014)	(0.020)	(0.023)	(0.038)	(0.046)
4320 (72.0)	0.0	0.0	0.0	0.0	0.6	1.0
	(0.000)	(0.000)	(0.000)	(0.000)	(0.003)	(0.005)

Time Accessed	16 January 2024 10:22AM
Version	2018_v1
Note	Preburst interpolation methods for catchment wide preburst has been slightly altered. Point values remain unchanged.

Values are of the format depth (ratio) with depth in mm

min (h)\AEP(%)	50	20	10	5	2	1
60 (1.0)	18.7	19.1	19.3	19.6	21.0	22.1
	(1.137)	(0.896)	(0.788)	(0.706)	(0.659)	(0.629)
90 (1.5)	20.6	20.8	20.9	21.1	22.3	23.2
	(1.083)	(0.850)	(0.744)	(0.664)	(0.611)	(0.578)
120 (2.0)	21.8	23.5	24.6	25.7	24.5	23.7
	(1.035)	(0.868)	(0.791)	(0.732)	(0.608)	(0.533)
180 (3.0)	26.6	27.2	27.5	27.8	33.2	37.2
	(1.086)	(0.861)	(0.757)	(0.679)	(0.704)	(0.717)
360 (6.0)	20.9	31.7	38.9	45.8	54.4	60.9
	(0.644)	(0.756)	(0.802)	(0.832)	(0.852)	(0.861)
720 (12.0)	24.0	35.5	43.1	50.4	67.5	80.3
	(0.553)	(0.624)	(0.649)	(0.663)	(0.758)	(0.809)
1080 (18.0)	15.0	25.0	31.6	38.0	54.4	66.8
	(0.294)	(0.369)	(0.397)	(0.414)	(0.504)	(0.553)
1440 (24.0)	8.4	16.0	21.0	25.9	38.2	47.5
	(0.148)	(0.210)	(0.234)	(0.249)	(0.312)	(0.346)
2160 (36.0)	6.4	10.8	13.8	16.6	29.6	39.3
	(0.098)	(0.123)	(0.131)	(0.136)	(0.206)	(0.244)
2880 (48.0)	8.6	13.6	17.0	20.2	25.7	29.8
	(0.121)	(0.141)	(0.147)	(0.151)	(0.162)	(0.168)
4320 (72.0)	1.0	5.6	8.6	11.5	11.2	10.9
	(0.013)	(0.052)	(0.067)	(0.077)	(0.064)	(0.056)

Time Accessed	16 January 2024 10:22AM
Version	2018_v1
Note	Preburst interpolation methods for catchment wide preburst has been slightly altered. Point values remain unchanged.

### 16/01/2024, 10:23

Interim Climate Change Factors

	RCP 4.5	RCP6	RCP 8.5
2030	0.816 (4.1%)	0.726 (3.6%)	0.934 (4.7%)
2040	1.046 (5.2%)	1.015 (5.1%)	1.305 (6.6%)

16/01/2024,	10:23
-------------	-------

Results | ARR Data Hub

2021, 10.20				
2050	1.260 (6.3%)	1.277 (6.4%)	1.737 (8.8%)	
2060	1.450 (7.3%)	1.520 (7.7%)	2.214 (11.4%)	
2070	1.609 (8.2%)	1.753 (8.9%)	2.722 (14.2%)	
2080	1.728 (8.8%)	1.985 (10.2%)	3.246 (17.2%)	
2090	1.798 (9.2%)	2.226 (11.5%)	3.772 (20.2%)	
Layer Info				
Time Accessed	16 January 2024 10:2	2AM		
Version	2019_v1			
Note	ARR recommends the use of RCP4.5 and RCP 8.5 values. These have been updated to the			

values that can be found on the climate change in Australia website.

## Probability Neutral Burst Initial Loss

min (h)\AEP(%)	50.0	20.0	10.0	5.0	2.0	1.0
60 (1.0)	16.6	11.3	9.5	8.9	8.6	8.0
90 (1.5)	19.2	11.2	9.4	9.2	9.1	8.1
120 (2.0)	18.9	10.6	9.1	9.2	8.7	8.1
180 (3.0)	18.3	10.3	9.2	9.7	9.1	6.5
360 (6.0)	18.4	12.1	10.0	9.9	8.9	6.1
720 (12.0)	18.9	13.3	12.6	12.1	9.5	5.0
1080 (18.0)	21.5	16.4	15.3	14.7	12.1	6.3
1440 (24.0)	23.5	18.8	18.1	18.8	15.5	9.5
2160 (36.0)	24.4	20.4	20.2	22.6	17.8	11.2
2880 (48.0)	24.5	20.5	20.3	23.5	18.5	13.0
4320 (72.0)	26.0	22.8	23.3	26.6	23.9	19.0

Time Accessed	16 January 2024 10:22AM
Version	2018_v1

**Note** As this point is in NSW the advice provided on losses and pre-burst on the NSW Specific Tab of the ARR Data Hub (./nsw_specific) is to be considered. In NSW losses are derived considering a hierarchy of approaches depending on the available loss information. Probability neutral burst initial loss values for NSW are to be used in place of the standard initial loss and pre-burst as per the losses hierarchy.

Download TXT (downloads/8e616cab-f95e-49e8-a578-43127bd56dcc.txt)

Download JSON (downloads/a3ea17bd-5909-4545-9733-d06ac411247a.json)

Generating PDF... (downloads/b0fbcb0e-f336-4d08-bb67-d47bd45d5b13.pdf)

# Appendix C

IFD Data



### Location

Label: Not provided

Latitude: -34.458 [Nearest grid cell: 34.4625 (<u>S</u>)]

Longitude:149.47 [Nearest grid cell: 149.4625 (<u>E</u>)]

## IFD Design Rainfall Depth (mm)

Issued: 16 January 2024

Rainfall depth for Durations, Exceedance per Year (EY), and Annual Exceedance Probabilities (AEP). FAQ for New ARR probability terminology

	Annual Exceedance Probability (AEP)						
Duration	63.2%	50%#	20%*	10%	5%	2%	1%
1 <u>min</u>	1.33	1.48	1.94	2.25	2.55	2.95	3.25
2 <u>min</u>	2.24	2.47	3.17	3.62	4.06	4.63	5.05
3 <u>min</u>	3.10	3.41	4.39	5.04	5.67	6.48	7.09
4 <u>min</u>	3.85	4.25	5.50	6.34	7.15	8.21	9.02
5 <u>min</u>	4.51	5.00	6.50	7.51	8.49	9.78	10.8
10 <u>min</u>	6.95	7.72	10.1	11.8	13.4	15.5	17.2
15 <u>min</u>	8.55	9.50	12.5	14.5	16.5	19.2	21.2
20 <u>min</u>	9.75	10.8	14.2	16.5	18.8	21.8	24.1
25 <u>min</u>	10.7	11.9	15.6	18.1	20.5	23.8	26.3
30 <u>min</u>	11.5	12.8	16.7	19.4	22.0	25.4	28.1
45 <u>min</u>	13.4	14.8	19.3	22.3	25.2	29.1	32.1
1 hour	14.9	16.4	21.3	24.6	27.7	31.9	35.1
1.5 hour	17.2	19.0	24.5	28.2	31.8	36.5	40.1
2 hour	19.1	21.1	27.1	31.2	35.1	40.4	44.4
3 hour	22.3	24.6	31.5	36.3	41.0	47.1	51.9
4.5 hour	26.2	28.8	37.1	42.8	48.5	56.0	61.8
6 hour	29.5	32.4	42.0	48.5	55.1	63.9	70.7
9 hour	34.8	38.4	50.1	58.3	66.4	77.5	86.1
12 hour	39.1	43.3	56.9	66.5	76.1	89.1	99.3
18 hour	45.8	51.0	67.8	79.7	91.7	108	121
24 hour	50.8	56.8	76.2	89.9	104	123	137
30 hour	54.8	61.4	82.9	98.2	114	134	150
36 hour	58.1	65.2	88.4	105	122	144	161
48 hour	63.1	71.0	96.9	115	134	158	177
72 hour	69.7	78.7	108	128	149	176	196
96 hour	74.2	83.8	115	136	158	186	208
120 hour	77.6	87.6	120	142	164	193	215
144 hour	80.5	90.8	123	146	169	199	221
168 hour	83.3	93.7	127	150	173	203	227

Note:

# The 50% AEP IFD **does not** correspond to the 2 year Average Recurrence Interval (ARI) IFD. Rather it corresponds to the 1.44 ARI.

* The 20% AEP IFD **does not** correspond to the 5 year Average Recurrence Interval (ARI) IFD.

### Rather it corresponds to the 4.48 ARI.

This page was created at 10:23 on Tuesday 16 January 2024 (AEDT)

© <u>Copyright</u> Commonwealth of Australia 2024, Bureau of Meteorology (ABN 92 637 533 532) | CRICOS Provider 02015K | <u>Disclaimer</u> | <u>Privacy</u> | <u>Accessibility</u>

# Appendix D

**PMF** Calculations

### Four sheets are provided here.

1. Worksh

Enter the 49 required factors in the table below. Results appear in the green cells. ARI (years) Factors D This method calculates design rainfall intensities for several average recurrence intervals (ARIs using seven polynomial equations. А в С Е F G 0.0000536 0.0000447 0.0000166 -0.0000010 -0.000021 -0.0000156 -0.0000148 
 2.830027
 -0.60219

 3.086687
 -0.60784

 3.33667
 -0.62283

 3.463772
 -0.63056

 3.612309
 -0.63808

 3.783772
 -0.64612

 3.90044
 -0.65194
 0.00991 0.009557 0.00887 0.00832 0.008317 0.008017 -0.0319 -0.0311 -0.0295 -0.0287 -0.0277 -0.0269 -0.0261 -0.000232 -0.000229 -0.000107 -0.000038 0.000086 -0.000009 -0.0005299 -0.0004687 -0.0003311 -0.0002439 0.0002150 0.0001529 0.0001446 These factors can be copied directly from the site: http://www.bom.gov.au/cgi-bin/hydro/has/CDIRSWebBasic 2 5 10 20 50 100 These factors can be copied directly from the siXes CollEst http://www.bom.gov.au/cg-htm/hytro/has/CSIEStWebBasic_ which is provided by the Hydrometeorological Advisory Service (HAS) of the Australian Bureau of Meteorology. If you select the 'non flash' version, and enter the latitude and longitude of a site, you can copy the 49 factors out directly from the webpage, and paste these into the yellow cells to the left. The intensities will automatically be adjusted to provide relevant intensities. 0.00809 -0.000065 Duration (minutes) Average Recurrence Interval (years) 5 10 20 50 1 2 100 56.3 52.6 49.5 47.0 44.8 42.9 39.7 35.8 31.2 27.8 25.3 35.8 31.2 21.5 20.1 18.9 17.9 13.2 11.0 8.5 7.1 14.9 8.5 7.1 15.4 4.2 3.5 2.6 1.3 0.9 Times from 5 minutes to 72 hours can be added by inserting extra rows and filling the cells in these. 99.2 92.5 86.9 82.2 78.2 74.6 68.6 61.6 53.2 47.2 42.6 61.6 53.2 47.2 42.6 39.0 36.0 33.6 5.2 9.7 28.1 13.8 11.5 5.5 2.6 2.1 1.8 8.5 184.1 172.6 162.5 133.7 145.9 96.9 139.0 127.2 113.5 96.9 85.3 76.5 65.6 64.1 55.6 55.6 55.6 54.3 37.8 31.1 49.4 37.8 31.1 19.5 7.5 6.4 15.2 7.5 6.4 15.2 7.5 6.4 15.2 3.9 131.8 124.1 117.3 117.3 105.9 2.9 83.2 71.4 92.9 83.2 71.4 41.6 63.1 56.7 51.8 39.2 23.6 37.1 28.5 23.6 18.0 14.9 11.4 8.8 7.4 6.0 14.9 11.4 9 11.4 2 3.5 2 2 4.4 4.4 4.1 3.9 74.0 69.1 65.0 61.7 58.7 56.2 51.9 46.8 40.6 36.2 32.8 30.1 27.9 26.0 24.4 23.1 21.9 17.0 14.2 10.9 161.0 151.2 142.5 134.9 128.2 122.2 122.2 122.2 122.0 85.6 61.7 56.9 52.8 61.7 56.9 52.8 49.4 46.5 52.8 49.4 44.0 33.7 27.8 21.2 17.4 9 10 12 20 25 30 25 30 35 40 45 50 55 60 1.5 2 3 54. 48. 44. 9 12 18 24 36 48 60 72

ff 1977 P

2. Worksheet Ca m Bureau of Me

A developed version of the method given in previous Bulletins 51 and 53 is available for download from www.bom.gov.au/hydro/has/gsdm_document.shtml This procedure only determines the rainfall patterns. It does not apply the spatial distribution procedure described in Section 6 of the document.

ainfall & R

FOLLOW THE PROCEDURES BELOW, ENTERING VALUES IN THE YELLOW BOXES

1. Use one of the procedures below to det cipitation depths for various durations

If area >= 1 km², 
 Smooth Depth
 Rough Depth
 Avera Dep Depth

 (mm)
 (mm)
 (mm)

 212
 0
 21

 315
 0
 31

 400
 0
 40

 465
 0
 46

 527
 0
 52

 595
 0
 59

 665
 0
 666

 730
 0
 73

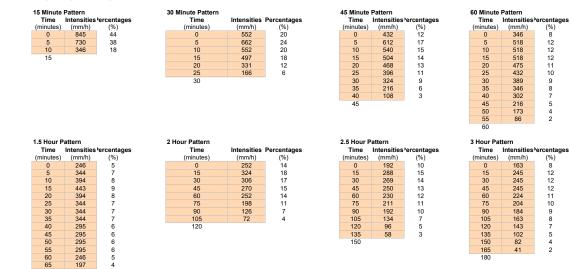
 790
 0
 73

 840
 0
 84

 Enter depths from Figure 4
 for the particular catchment area.
 Catchment Area (km²) Percent Rough (%) Elevation of Catchment (m) Moisture Adjustment Factor (%) 9 0 905 66 Duration (h) Averaged Depth (mm) 212 315 400 465 527 595 637 665 730 790 840 Adjusted Depth (mm) 140 208 264 307 348 393 420 439 482 521 554 Rounded Depth (mm) 140 210 260 310 350 350 420 440 480 520 550 Section 4.2 Section 4.3 Figure 3 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5 6 Check - Depths taken from Figure 4 Point 1 km² Point Value Value Value (Poursh) (0 If area < 1 km², 
 Catchment Area (km²)
 0.43

 Percent Rough (%)
 0

 Section 4.2
 005


 Section 4.2
 065

 Moisture Adjustment Factor (%)
 66
 Duration (h) Smooth Depth Averaged Depth (mm) 248 356 451 544 614 683 730 772 854 Adjusted Rough Depth Depth (mm) 164 235 298 359 405 451 482 510 564 604 632 Depth (mm) 160 230 300 360 410 450 480 510 560 600 630 (Smooth) (mm) 250 360 460 570 640 710 760 810 900 960 1000 (Rough) (mm) 250 360 460 570 740 880 990 1090 1250 1360 1450 (mm) 247.85 355.7 451.4 544.2 703.45 832.7 930.66 1024.64 1170.45 (mm) 247.85 355.7 451.4 544.2 614.2 682.91 729.9 772.16 853.99 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5 6 245 350 440 510 580 647 690 722 793 856 900 915.28 957 1280.88 915 957 1360.56

2. Transfer the results from either

of the above procedures to the coloured columns below

# 3. The intensities in the coloured columns given below can be transferred directly to the rainfall data base in *DRAINS*. Using your mouse, select the numbers in the pairs of columns required and choose Copy from the View menu. Go to the *DRAINS* rainfall data base using the **Project -> Rainfall Data...** option in *DRAINS*. Click the **Add a New Storm** button. When the new window appears, click the **Paste** button. The numbers and accompanying graph will appear. Enter a suitable title. Repeat the process as required. Adjusted Depth (mm) 160 2300 360 410 450 450 480 564 604 632



Note: Depths are calculated from those in Bulletin 53

corresponding to zero area and to 1 km²

0	346	8
5	518	12
10	518	12
15	518	12
20	475	11
25	432	10
30	389	9
35	346	8
40	302	7
45	216	5
50	173	4
55	86	2
60		
3 Hour Pat		
Time	Intensities	'ercentages
Time (minutes)	Intensities (mm/h)	(%)
Time (minutes) 0	Intensities (mm/h) 163	(%) 8
Time (minutes) 0 15	Intensities (mm/h) 163 245	(%) 8 12
Time (minutes) 0	Intensities (mm/h) 163	(%) 8
Time (minutes) 0 15 30 45	Intensities (mm/h) 163 245 245 245 245	(%) 8 12 12 12 12
Time (minutes) 0 15 30 45 60	Intensities (mm/h) 163 245 245 245 245 224	(%) 8 12 12 12 12 12
Time (minutes) 0 15 30 45 60 75	Intensities (mm/h) 163 245 245 245 245 224 224 204	(%) 8 12 12 12 12 11 10
Time (minutes) 0 15 30 45 60 75 90	Intensities (mm/h) 163 245 245 245 245 224 204 184	(%) 8 12 12 12 11 10 9
Time (minutes) 0 15 30 45 60 75	Intensities (mm/h) 163 245 245 245 245 224 224 204	(%) 8 12 12 12 11 10 9 8
Time (minutes) 0 15 30 45 60 75 90	Intensities (mm/h) 163 245 245 245 245 224 204 184	(%) 8 12 12 12 11 10 9
Time           (minutes)           0           15           30           45           60           75           90           105           120           135	Intensities (mm/h) 163 245 245 245 224 204 184 163 143 102	(%) 8 12 12 12 11 10 9 8 7 5
Time           (minutes)           0           15           30           45           60           75           90           105           120	Intensities (mm/h) 163 245 245 245 224 204 184 163 143	(%) 8 12 12 12 11 10 9 8 7 5 5 4
Time           (minutes)           0           15           30           45           60           75           90           105           120           135           150           165	Intensities (mm/h) 163 245 245 245 224 204 184 163 143 102	(%) 8 12 12 12 11 10 9 8 7 5
Time (minutes) 0 15 30 45 60 75 90 105 120 135 150	Intensities (mm/h) 163 245 245 245 245 224 204 184 163 143 102 82	(%) 8 12 12 12 11 10 9 8 7 5 4



4 Hour Pat	tern		5 Hour Pattern			6 Hour Pa	ttern
Time	Intensities	Percentages	Time	Intensities	Percentages	Time	Intensities 'e
(minutes)	(mm/h)	(%)	(minutes)	(mm/h)	(%)	(minutes)	(mm/h)
0	135	6	0	97	4	0	101
15	180	8	15	145	6	15	101
30	226	10	30	193	8	30	152
45	203	9	45	169	7	45	152
60	203	9	60	169	7	60	152
75	180	8	75	169	7	75	152
90	180	8	90	169	7	90	152
105	158	7	105	169	7	105	152
120	158	7	120	145	6	120	152
135	135	6	135	145	6	135	126
150	135	6	150	121	5	150	126
165	113	5	165	121	5	165	126
180	90	4	180	121	5	180	126
195	68	3	195	121	5	195	126
210	45	2	210	97	4	210	101
225	45	2	225	72	3	225	101
240			240	72	3	240	76
			255	48	2 2	255	76
			270	48		270	76
			285	24	1	285	51
			300			300	51
315 51							51
Note: The r	method can	only be used for du	rations up to 3 hours			330	25

Note: The method can only be used for durations up to 3 nours over a large part of southern and central Australia, including South Australia, western NSW and western Victoria - see Figure 2 of the Bulletin.


30	152
45	152
60	152
75	152
90	152
105	152
120	152
135	126
150	126
165	126
180	126
195	126
210	101
225	101
240	76
255	76
270	76
285	51
300	51
315	51
330	25
345	25
360	

3rcen. (%) 4 4

# Appendix F

**RFFEM** Outputs

# Results | Regional Flood Frequency Estimation Model



*The catchment is outside the recommended catchment size of 0.5 to 1,000 km². Results have lower accuracy and may not be directly applicable in practice.

AEP (%)	Discharge (m ³ /s)	Lower Confidence Limit (5%) (m ³ /s)	Upper Confidence Limit (95%) (m ³ /s)
50	0.560	0.240	1.32
20	1.22	0.540	2.79
10	1.86	0.830	4.27
5	2.65	1.17	6.17
2	3.95	1.70	9.45
1	5.18	2.17	12.7

# Statistics

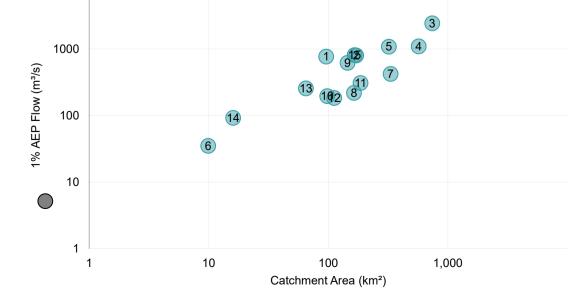
Variable	Value	Standard Dev
Mean	-0.313	0.428
Standard Dev	0.881	0.138
Skew	0.092	0.026

1.000		
-0.330	1.000	
0.170	-0.280	1.000

Note: These statistics come from the nearest gauged catchment. Details.

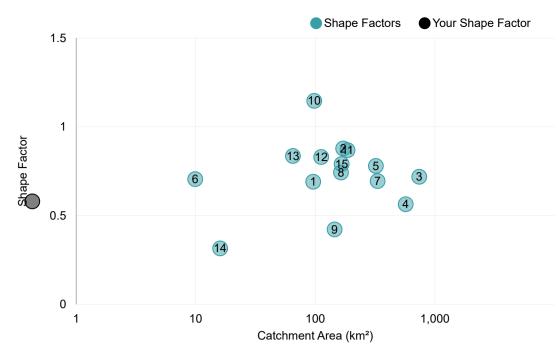
Note: These statistics are common to each region. Details.

Correlation

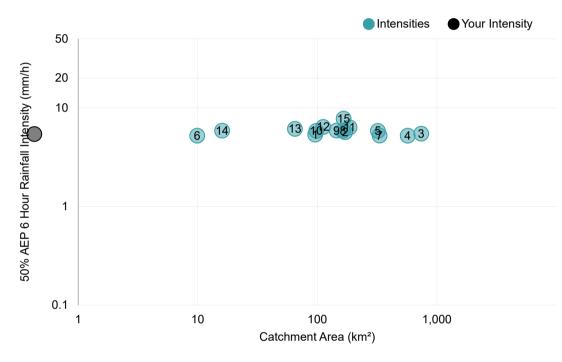

# 1% AEP Flow vs Catchment Area

Input Data	
Date/Time	2024-02-13 12:51
Catchment Name	Catchment1
Latitude (Outlet)	-34.444
Longitude (Outlet)	149.476
Latitude (Centroid)	-34.447
Longitude (Centroid)	149.474
Catchment Area (km ² )	0.43*
Distance to Nearest Gauged Catchment (km)	19.37
50% AEP 6 Hour Rainfall Intensity (mm/h)	5.420007
2% AEP 6 Hour Rainfall Intensity (mm/h)	10.693985
Rainfall Intensity Source (User/Auto)	Auto
Region	East Coast
Region Version	RFFE Model 2016 v1
Region Source (User/Auto)	Auto
Shape Factor	0.58
Interpolation Method	Natural Neighbour
Bias Correction Value	-0.274

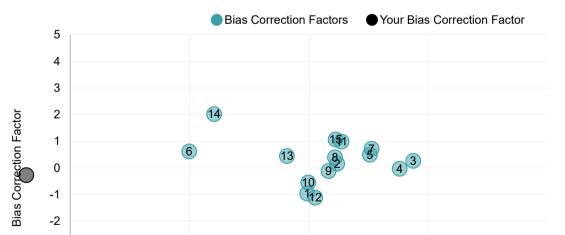
+ Orange Bathurst


Flow Over Flow

10000







# Shape Factor vs Catchment Area



# Intensity vs Catchment Area



# **Bias Correction Factor vs Catchment Area**





## Download

L TXT L Nearby L JSON

### 13/02/2024, 12:51

Method by Dr Ataur Rahman and Dr Khaled Haddad from Western Sydney University for the Australian Rainfall and Runoff Project. Full description of the project can be found at the project page (http://arr.ga.gov.au/revision-projects/project-list/projects/project-5) on the ARR website. Send any questions regarding the method or project here (mailto:admin@arr-software.org).

Results | Regional Flood Frequency Estimation Model



(http://www.engineersaustralia.org.au)



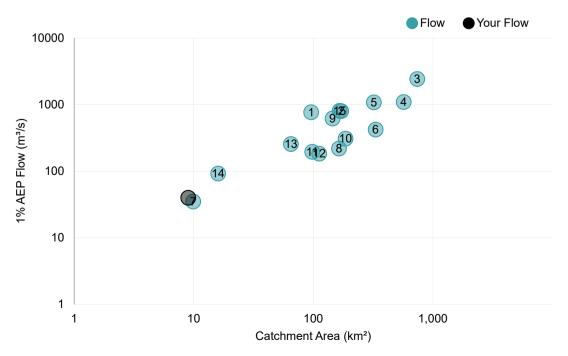
(http://www.uws.edu.au)

### https://rffe.arr-software.org

# **Results | Regional Flood Frequency Estimation Model**



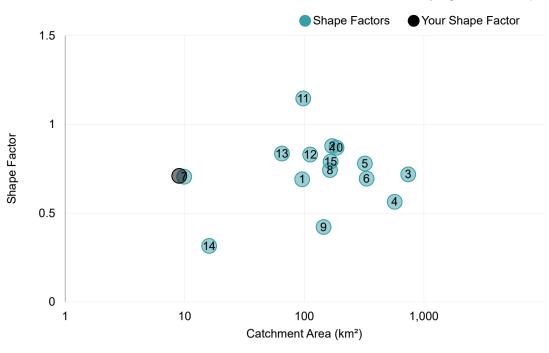
AEP (%)	Discharge (m ³ /s)	Lower Confidence Limit (5%) (m ³ /s)	Upper Confidence Limit (95%) (m ³ /s)
50	4.29	1.82	10.3
20	9.42	4.17	21.7
10	14.3	6.34	33.2
5	20.4	8.91	48.0
2	30.5	13.0	73.5
1	39.9	16.6	98.7


input Data	
Date/Time	2024-02-06 08:19
Catchment Name	Crookwell
Latitude (Outlet)	-34.445
Longitude (Outlet)	149.455
Latitude (Centroid)	-34.462
Longitude (Centroid)	149.466
Catchment Area (km ² )	9.0
Distance to Nearest Gauged Catchment (km)	19.93
50% AEP 6 Hour Rainfall Intensity (mm/h)	5.407097
2% AEP 6 Hour Rainfall Intensity (mm/h)	10.636885
Rainfall Intensity Source (User/Auto)	Auto
Region	East Coast
Region Version	RFFE Model 2016 v1
Region Source (User/Auto)	Auto
Shape Factor	0.71
Interpolation Method	Natural Neighbour
Bias Correction Value	-0.249

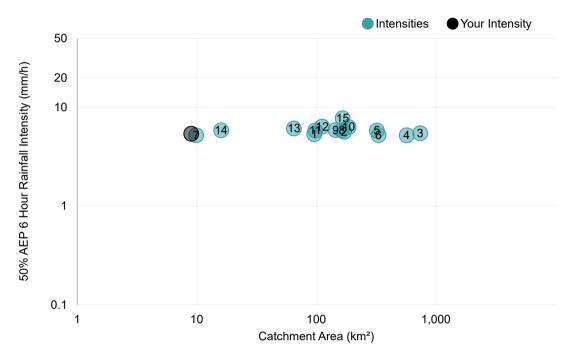
**Input Data** 

# **Statistics**

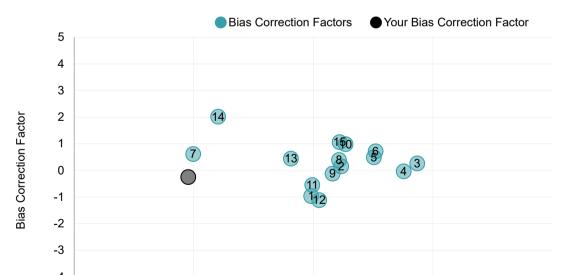
Variable	Value	Standard Dev		Correlation		
Mean	1.731	0.428	1.00	00		
Standard Dev	0.881	0.138	-0.3	30 1.0	00	
Skew	0.092	0.026	0.17	70 -0.2	.80 1.000	
Note: These statistics come	st gauged catchment. Details.	Note: These	Note: These statistics are common to each region. Deta			


# 1% AEP Flow vs Catchment Area









# Shape Factor vs Catchment Area



# Intensity vs Catchment Area



# **Bias Correction Factor vs Catchment Area**





## Download

L TXT L Nearby L JSON

Method by Dr Ataur Rahman and Dr Khaled Haddad from Western Sydney University for the Australian Rainfall and Runoff Project. Full description of the project can be found at the project page (http://arr.ga.gov.au/revision-projects/project-list/projects/project-5) on the ARR website. Send any questions regarding the method or project here (mailto:admin@arr-software.org).



Results | Regional Flood Frequency Estimation Model



(http://www.uws.edu.au)

### https://rffe.arr-software.org